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Abstract
When applying machine learning to sensitive
data, one has to find a balance between accu-
racy, information security, and computational-
complexity. Recent studies combined Homomor-
phic Encryption with neural networks to make
inferences while protecting against information
leakage. However, these methods are limited by
the width and depth of neural networks that can
be used (and hence the accuracy) and exhibit high
latency even for relatively simple networks. In
this study we provide two solutions that address
these limitations. In the first solution, we present
more than 10× improvement in latency and en-
able inference on wider networks compared to
prior attempts with the same level of security. The
improved performance is achieved by novel meth-
ods to represent the data during the computation.
In the second solution, we apply the method of
transfer learning to provide private inference ser-
vices using deep networks with latency of ∼ 0.16
seconds. We demonstrate the efficacy of our meth-
ods on several computer vision tasks.

1. Introduction
Machine learning is used in several domains such as edu-
cation, health, and finance in which data may be private or
confidential. Therefore, machine learning algorithms should
preserve privacy while making accurate predictions. The
privacy requirement pertains to all sub-tasks of the learning
process, such as training and inference. For the purpose of
this study, we focus on private neural-networks inference.
In this problem, popularized by the work on CryptoNets
(Dowlin et al., 2016), the goal is to build an inference ser-
vice that can make predictions on private data. To achieve
this goal, the data is encrypted before it is sent to the pre-
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diction service, which should be capable of operating on
the encrypted data without having access to the raw data.
Several cryptology technologies have been proposed for
this task, including Secure Multi-Party Computation (MPC)
(Yao, 1982; Goldreich et al., 1987), hardware enclaves, such
as Intel’s Software Guard Extensions (SGX) (McKeen et al.,
2013), Homomorphic Encryption (HE) (Gentry, 2009), and
combinations of these techniques.

The different approaches present different trade-offs in terms
of computation, accuracy, and security. HE presents the
most stringent security model. The security assumption
relies on the hardness of solving a mathematical problem
for which there are no known efficient algorithms, even by
quantum computers (Gentry, 2009; Albrecht et al., 2018).
Other techniques, such as MPC and SGX make additional
assumptions and therefore provide weaker protection to the
data (Yao, 1982; McKeen et al., 2013; Chen et al., 2018;
Koruyeh et al., 2018).

While HE provides the highest level of security it is also
limited in the kind of operations it allows and the complexity
of these operations (see Section 3.1). CryptoNets (Dowlin
et al., 2016) was the first demonstration of a privacy pre-
serving Encrypted Prediction as a Service (EPaaS) solution
(Sanyal et al., 2018) based on HE. CryptoNets are capable
of making predictions with accuracy of 99% on the MNIST
task (LeCun et al., 2010) with a throughput of ∼ 59000
predictions per hour. However, CryptoNets have several
limitations. The first is latency - it takes CryptoNets 205
seconds to process a single prediction request. The second
is the width of the network that can be used for inference.
The encoding scheme used by CryptoNets, which encodes
each node in the network as a separate message, can create
a memory bottleneck when applied to networks with many
nodes. For example, CryptoNets’ approach requires 100’s
of Gigabytes of RAM to evaluate a standard convolutional
network on CIFAR-10. The third limitation is the depth of
the network that can be evaluated. Each layer in the network
adds more sequential multiplication operations which re-
sult in increased noise levels and message size growth (see
Section 5). This makes private inference on deep networks,
such as AlexNet (Krizhevsky et al., 2012), infeasible with
CryptoNets’ approach.
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In this study, we present two solutions that address these
limitations. The first solution is Low-Latency CryptoNets
(LoLa), which can evaluate the same neural network used by
CryptoNets in as little as 2.2 seconds. Most of the speedup
(11.2× ) comes from novel ways to represent the data when
applying neural-networks using HE.1 In a nut-shell, Cryp-
toNets represent each node in the neural network as a sep-
arate message for encryption, while LoLa encrypts entire
layers and changes representations of the data throughout
the computation. This speedup is achieved while maintain-
ing the same accuracy in predictions and 128 bits of security
(Albrecht et al., 2018).2

LoLa provides another significant benefit over CryptoNets.
It substantially reduces the amount of memory required to
process the encrypted messages and allows for inferences
on wider networks. We demonstrate that in an experiment
conducted on the CIFAR-10 dataset, for which CryptoNets’
approach fails to execute since it requires 100’s of Gigabytes
of RAM. In contrast, LoLa, can make predictions in 12
minutes using only a few Gigabytes of RAM.

The experiment on CIFAR demonstrates that LoLa can han-
dle larger networks than CryptoNets. However, the perfor-
mance still degrades considerably when applied to deeper
networks. To handle such networks we propose another
solution which is based on transfer learning. In this ap-
proach, data is first processed to form “deep features” that
have higher semantic meaning. These deep features are
encrypted and sent to the service provider for private eval-
uation. We discuss the pros and cons of this approach in
Section 5 and show that it can make private predictions on
the CalTech-101 dataset in 0.16 seconds using a model that
has class balanced accuracy of 81.6%. To the best of our
knowledge, we are the first to propose using transfer learn-
ing in private neural network inference with HE. Our code is
freely available at https://github.com/microsoft/CryptoNets.

2. Related Work
The task of private predictions has gained increasing atten-
tion in recent years. Dowlin et al. (2016) presented Cryp-
toNets which demonstrated the feasibility of private neural
networks predictions using HE. CryptoNets are capable of
making predictions with high throughput but are limited
in both the size of the network they can support and the
latency per prediction. Bourse et al. (2017) used a differ-
ent HE scheme that allows fast bootstrapping which results
in only linear penalty for additional layers in the network.
However, it is slower per operation and therefore, the results
they presented are significantly less accurate (see Table 2).

1The rest of the speedup (8.2×) is due to the use of a faster
implementation of HE.

2The HE scheme used by CryptoNets was found to have some
weaknesses that are not present in the HE scheme used here.

Boemer et al. (2018) proposed an HE based extension to
the Intel nGraph compiler. They use similar techniques to
CryptoNets (Dowlin et al., 2016) with a different underlying
encryption scheme, HEAAN (Cheon et al., 2017). Their
solution is slower than ours in terms of latency (see Table 2).
In another recent work, Badawi et al. (2018) obtained a
40.41× acceleration over CryptoNets by using GPUs. In
terms of latency, our solution is more than 6× faster than
their solution even though it uses only the CPU. Sanyal
et al. (2018) argued that many of these methods leak infor-
mation about the structure of the neural-network that the
service provider uses through the parameters of the encryp-
tion. They presented a method that leaks less information
about the neural-network but their solution is considerably
slower. Nevertheless, their solution has the nice benefit that
it allows the service provider to change the network without
requiring changes on the client side.

In parallel to our work, Chou et al. (2018) introduce alterna-
tive methods to reduce latency. Their solution on MNIST
runs in 39.1s (98.7% accuracy), whereas our LoLa runs in
2.2s (98.95% accuracy). On CIFAR, their inference takes
more than 6 hours (76.7% accuracy), and ours takes less
than 12 minutes (74.1% accuracy). Makri et al. (2019) ap-
ply transfer learning to private inference. However, their
methods and threat model are different.

Other researchers proposed using different encryption
schemes. For example, the Chameleon system (Riazi et al.,
2018) uses MPC to demonstrate private predictions on
MNIST and Juvekar et al. (2018) used a hybrid MPC-HE ap-
proach for the same task. Several hardware based solutions,
such as the one of Tramer & Boneh (2018) were proposed.
These approaches are faster however, this comes at the cost
of lower level of security.

3. Background
In this section we provide a concise background on Homo-
morphic Encryption and CryptoNets. We refer the reader to
Dowlin et al. (2017) and Dowlin et al. (2016) for a detailed
exposition. We use bold letters to denote vectors and for
any vector u we denote by ui its ith coordinate.

3.1. Homomorphic Encryption

In this study, we use Homomorphic Encryptions (HE) to
provide privacy. HE are encryptions that allow operations
on encrypted data without requiring access to the secret key
(Gentry, 2009). The data used for encryption is assumed to
be elements in a ringR. On top of the encryption function E
and the decryption function D, the HE scheme provides two
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additional operators ⊕ and ⊗ so that for any x1, x2 ∈ R

D (E(x1)⊕E (x2)) = x1 + x2 and
D (E (x1)⊗ E (x2)) = x1 × x2

where + and × are the standard addition and multiplication
operations in the ringR. Therefore, the ⊕ and ⊗ operators
allow computing addition and multiplication on the data
in its encrypted form and thus computing any polynomial
function. We note that the ring R refers to the plaintext
message ring and not the encrypted message ring. In the
rest of the paper we refer to the former ring and note that
by the homomorphic properties, any operation on an en-
crypted message translates to the same operation on the
corresponding plaintext message.

Much progress has been made since Gentry (2009) intro-
duced the first HE scheme. We use the Brakerski/Fan-
Vercauteren scheme3 (BFV) (Fan & Vercauteren, 2012;
Brakerski & Vaikuntanathan, 2014) In this scheme, the ring
on which the HE operates is R =

Zp[x]
xn+1 where Zp = Z

pZ ,
and n is a power of 2.4 If the parameters p and n are cho-
sen so that there is an order 2n root of unity in Zp, then
every element inR can be viewed as a vector of dimension
n of elements in Zp where addition and multiplication op-
erate component-wise (Brakerski et al., 2014). Therefore,
throughout this essay we will refer to the messages as n
dimensional vectors in Zp. The BFV scheme allows an-
other operation on the encrypted data: rotation. The rotation
operation is a slight modification to the standard rotation
operation of size k that sends the value in the i’th coordinate
of a vector to the ((i+ k) mod n) coordinate.

To present the rotation operations it is easier to think of the
message as a 2× n/2 matrix:

[
m1 m2 · · mn/2

mn/2+1 mn/2+2 · · mn

]
with this view in mind, there are two rotations allowed, one
switches the row, which will turn the above matrix to[

mn/2+1 mn/2+2 · · mn

m1 m2 · · mn/2

]
and the other rotates the columns. For example, rotating the
original matrix by one column to the right will result in[

mn/2 m1 · · mn/2−1

mn mn/2+1 · · mn−1

]
.

3We use version 2.3.1 of the SEAL, http://sealcrypto.
org/, with parameters that guarantee 128 bits of security ac-
cording to the proposed standard for Homomorphic Encryptions
(Albrecht et al., 2018).

4See supplementary material for a brief introduction to rings
used in this work.

Since n is a power of two, and the rotations we are interested
in are powers of two as well, thinking about the rotations as
standard rotations of the elements in the message yields sim-
ilar results for our purposes. In this view, the row-rotation
is a rotation of size n/2 and smaller rotations are achieved
by column rotations.

3.2. CryptoNets

Dowlin et al. (2016) introduced CryptoNets, a method that
performs private predictions on neural networks using HE.
Since HE does not support non-linear operations such as
ReLU or sigmoid, they replaced these operations by square
activations. Using a convolutional network with 4 hidden
layers, they demonstrated that CryptoNets can make predic-
tions with an accuracy of 99% on the MNIST task. They
presented latency of 205 seconds for a single prediction and
throughput of ∼ 59000 predictions per hour.

The high throughput is due to the vector structure of en-
crypted messages used by CryptoNets, which allows pro-
cessing multiple records simultaneously. CryptoNets use
a message for every input feature. However, since each
message can encode a vector of dimension n, then n input
records are encoded simultaneously such that vij , which is
the value of the j’th feature in the i’th record is mapped to
the i’th coordinate of the j’th message. In CryptoNets all
operations between vectors and matrices are implemented
using additions and multiplications only (no rotations). For
example, a dot product between two vectors of length k is
implemented by k multiplications and additions.

CryptoNets have several limitations. First, the fact that
each feature is represented as a message, results in a large
number of operations for a single prediction and therefore
high latency. The large number of messages also results
in high memory usage and creates memory bottlenecks as
we demonstrate in Section 4.4. Furthermore, CryptoNets
cannot be applied to deep networks such as AlexNet. This is
because the multiplication operation in each layer increases
the noise in the encrypted message and the required size
of each message, which makes each operation significantly
slower when many layers exist in the network (see Section
5 for further details).

4. LoLa
In this section we present the Low-Latency CryptoNets
(LoLa) solution for private inference. LoLa uses various
representations of the encrypted messages and alternates
between them during the computation. This results in better
latency and memory usage than CryptoNets, which uses a
single representation where each pixel (feature) is encoded
as a separate message.

In Section 4.1, we show a simple example of a linear classi-

http://sealcrypto.org/
http://sealcrypto.org/
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fier, where a change of representation can substantially re-
duce latency and memory usage. In Section 4.2, we present
different types of representations and how various matrix-
vector multiplication implementations can transform one
type of representation to another. In Section 4.3, we apply
LoLa in a private inference task on MNIST and show that
it can perform a single prediction in 2.2 seconds. In Sec-
tion 4.4, we apply LoLa to perform private inference on the
CIFAR-10 dataset.

4.1. Linear Classifier Example

In this section we provide a simple example of a linear
classifier that illustrates the limitations of CryptoNets that
are due to its representation. We show that a simple change
of the input representation results in much faster inference
and significantly lower memory usage. This change of
representation technique is at the heart of the LoLa solution
and in the next sections we show how to extend it to non-
linear neural networks with convolutions.

Assume that we have a single d dimensional input vector v
(e.g., a single MNIST image) and we would like to apply a
private prediction of a linear classifier w on v. Using the
CryptoNets representation, we would need d messages for
each entry of v and d multiplication and addition operations
to perform the dot product w · v.

Consider the following alternative representation: encode
the input vector v as a single message m where for all
i, mi = vi. We can implement a dot product between
two vectors, whose sizes are a power of 2, by applying
point-wise multiplication between the two vectors and a
series of log d rotations of size 1, 2, 4, . . . , d/2 and addition
between each rotation. The result of such a dot product
is a vector that holds the results of the dot-product in all
its coordinates.5 Thus, in total the operation requires log d
rotations and additions and a single multiplication, and uses
only a single message. This results in a significant reduction
in latency and memory usage compared to the CryptoNets
approach which requires d operations and d messages.

4.2. Message Representations

In the previous section we saw an example of a linear clas-
sifier with two different representations of the encrypted
data and how they affect the number of HE operations and
memory usage. To extend these observations to generic
feed-forward neural networks, we define other forms of

5Consider calculating the dot product of the vectors
(v1, ..., v4) and (w1, ..., w4) . Point-wise multiplication,
rotation of size 1 and summation results in the vector
(v1w1 + v4w4, v2w2 + v1w1, v3w3 + v2w2, v4w4 + v3w3).
Another rotation of size 2 and summation results in the 4
dimensional vector which contains the dot-product of the vectors
in all coordinates.

representations which are used by LoLa. Furthermore, we
define different implementations of matrix-vector multipli-
cations and show how they change representations during
the forward pass of the network. As an example of this
change of representation, consider a matrix-vector multi-
plication, where the input vector is represented as a single
message (mi = vi as in the previous section). We can multi-
ply the matrix by the vector using r dot-product operations,
where the dot-product is implemented as in the previous
section, and r is the number of rows in the matrix. The
result of this operation is a vector of length r that is spread
across r messages (recall that the result of the dot-product
operation is a vector which contains the dot-product result
in all of its coordinates). Therefore, the result has a different
representation than the representation of the input vector.

Different representations can induce different computational
costs and therefore the choice of the representations used
throughout the computation is important for obtaining an
efficient solution. In the LoLa solution, we propose using
different representations for different layers of the network.
In this study we present implementations for several neural
networks to demonstrate the gains of using varying rep-
resentations. Automating the process of finding efficient
representations for a given network is beyond the scope of
the current work.

We present different possible vector representations in Sec-
tion 4.2.1 and discuss matrix-vector multiplication imple-
mentations in Section 4.2.2. We note that several representa-
tions are new (e.g., convolutional and interleaved), whereas
SIMD and dense representations were used before.

4.2.1. VECTOR REPRESENTATIONS

Recall that a message encodes a vector of length n of ele-
ments in Zp. For the sake of brevity, we assume that the
dimension of the vector v to be encoded is of length k
such that k ≤ n, for otherwise multiple messages can be
combined. We will consider the following representations:

Dense representation. A vector v is represented as a sin-
gle message m by setting vi 7→ mi.

Sparse representation. A vector v of length k is repre-
sented in k messages m1, . . .mk such that mi is a vector
in which every coordinate is set to vi.6

Stacked representation. For a short (low dimension)
vector v, the stacked representation holds several copies
of the vector v in a single message m. Typically this

6Recall that the messages are in the ring R =
Zp[x]

xn+1
which, by

the choice of parameters, is homomorphic to (Zp)n. When a vector
has the same value vi in all its coordinates, then its polynomial
representation in Zp[x]

xn+1
is the constant polynomial vi.
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will be done by finding d = dlog (k)e, the smallest d
such that the dimension of v is at most 2d and setting
mi,mi+2d ,mi+2·2d , . . . = vi.

Interleaved representation. The interleaved representa-
tion uses a permutation σ of [1, . . . , n] to set mσ(i) = vi.
The dense representation is a special case of the interleaved
representation where σ is the identity permutation.

Convolution representation. This is a special representa-
tion that makes convolution operations efficient. A convolu-
tion, when flattened to a single dimension, can be viewed as
a restricted linear operation where there is a weight vector
w of length r (the window size) and a set of permutations
σi such that the i’th output of the linear transformation is∑
j wjvσi(j). The convolution representation takes a vector

v and represents it as r messages m1, . . . ,mr such that
mj
i = vσi(j).

7

SIMD representation: This is the representation used by
CryptoNets (Dowlin et al., 2016). They represent each
feature as a separate message but map multiple data vectors
into the same set of messages, as described in Section 3.2.

4.2.2. MATRIX-VECTOR MULTIPLICATIONS

Matrix-vector multiplication is a core operation in neural
networks. The matrix may contain the learned weights of the
network and the vector represents the values of the nodes at
a certain layer. Here we present different ways to implement
such matrix-vector operations. Each method operates on
vectors in different representations and produces output in
yet another representation. Furthermore, the weight matrix
has to be represented appropriately as a set of vectors, either
column-major or row-major to allow the operation. We
assume that the matrix W has k columns c1, . . . , ck and r
rows r1, . . . , rr. We consider the following matrix-vector
multiplication implementations.

Dense Vector – Row Major. If the vector is given as a
dense vector and each row rj of the weight matrix is en-
coded as a dense vector then the matrix-vector multiplication
can be applied using r dot-product operations. As already
described above, a dot-product requires a single multipli-
cation and log (n) additions and rotations. The result is a

7For example, consider a matrix A ∈ R4×4 which corresponds
to an input image and a 2× 2 convolution filter that slides across
the image with stride 2 in each direction. Let ai,j be the entry at
row i and column j of the matrix A. Then, in this case r = 4 and
the following messages are formed M1 = (a1,1, a1,3, a3,1, a3,3) ,
M2 = (a1,2, a1,4, a3,2, a3,4), M3 = (a2,1, a2,3, a4,1, a4,3) and
M4 = (a2,2, a2,4, a4,2, a4,4). In some cases it will be more
convenient to combine the interleaved representation with the
convolution representation by a permutation τ such that mj

τ(i) =
vσi(j).

sparse representation of a vector of length r.

Sparse Vector – Column Major. Recall that Wv =∑
vic

i. Therefore, when v is encoded in a sparse format,
the message mi has all its coordinate set to vi and vici

can be computed using a single point-wise multiplication.
Therefore, Wv can be computed using k multiplications
and additions and the result is a dense vector.

Stacked Vector – Row Major. For the sake of clarity, as-
sume that k = 2d for some d. In this case n/k copies of v can
be stacked in a single message m (this operation requires
log (n/k) − 1 rotations and additions). By concatenating
n/k rows of W into a single message, a special version of
the dot-product operation can be used to compute n/k el-
ements of Wv at once. First, a point-wise multiplication
of the stacked vector and the concatenated rows is applied
followed by d−1 rotations and additions where the rotations
are of size 1, 2, . . . , 2d−1. The result is in the interleaved
representation.8

The Stacked Vector - Row Major gets its efficiency from two
places. First, the number of modified dot product operations
is rk/n and second, each dot product operation requires
a single multiplication and only d rotations and additions
(compared to log n rotations and additions in the standard
dot-product procedure).

Interleaved Vector – Row Major. This setting is very
similar to the dense vector – row major matrix multiplication
procedure with the only difference being that the columns
of the matrix have to be shuffled to match the permutation
of the interleaved representation of the vector. The result is
in sparse format.

Convolution vector – Row Major. A convolution layer
applies the same linear transformation to different locations
on the data vector v. For the sake of brevity, assume the
transformation is one-dimensional. In neural network lan-
guage that would mean that the kernel has a single map.
Obviously, if more maps exist, then the process described
here can be repeated multiple times.

Recall that a convolution, when flattened to a single di-
mension, is a restricted linear operation where the weight
vector w is of length r, and there exists a set of permutations
σi such that the i’th output of the linear transformation is∑
wjvσi(j). In this case, the convolution representation is

made of r messages such that the i’th element in the mes-

8For example, consider a 2× 2 matrix W flattened to a vector
w = (w1,1, w1,2, w2,1, w2,2) and a two-dimensional vector v =
(v1, v2). Then, after stacking the vectors, point-wise multiplication,
rotation of size 1 and summation, the second entry of the result
contains w1,1v1 + w1,2v2 and the fourth entry contains w2,1v1 +
w2,2v2. Hence, the result is in an interleaved representation.
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sage mj is vσi(j). By using a sparse representation of the
vector w, we get that

∑
wjm

j computes the set of required
outputs using r multiplications and additions. When the
weights are not encrypted, the multiplications used here
are relatively cheap since the weights are scalar and BFV
supports fast implementation of multiplying a message by a
scalar. The result of this operation is in a dense format.

4.3. Secure Networks for MNIST

Here we present private predictions on the MNIST data-set
(LeCun et al., 2010) using the techniques described above
and compare it to other private prediction solutions for this
task (see Table 2). Recall that CryptoNets use the SIMD
representation in which each pixel requires its own message.
Therefore, since each image in the MNIST data-set is made
up of an array of 28× 28 pixels, the input to the CryptoNets
network is made of 784 messages. On the reference machine
used for this work (Azure standard B8ms virtual machine
with 8 vCPUs and 32GB of RAM), the original CryptoNets
implementation runs in 205 seconds. Re-implementing it
to use better memory management and multi-threading in
SEAL 2.3 reduces the running time to 24.8 seconds. We
refer to the latter version as CryptoNets 2.3.

LoLa and CryptoNets use different approaches to evaluating
neural networks. As a benchmark, we applied both to the
same network that has accuracy of 98.95%. After suppress-
ing adjacent linear layers it can be presented as a 5 × 5
convolution layer with a stride of (2, 2) and 5 output maps,
which is followed by a square activation function that feeds
a fully connected layer with 100 output neurons, another
square activation and another fully connected layer with 10
outputs (in the supplementary material we include an image
of the architecture).

LoLa uses different representations and matrix-vector multi-
plication implementations throughout the computation. Ta-
ble 1 summarizes the message representations and opera-
tions that LoLa applies in each layer. The inputs to LoLa
are 25 messages which are the convolution representation
of the image. Then, LoLa performs a convolution vector
– row major multiplication for each of the 5 maps of the
convolution layer which results in 5 dense output messages.
These 5 dense output messages are joined together to form a
single dense vector of 5 ∗ 169 = 845 elements. This vector
is squared using a single multiplication and 8 copies of the
results are stacked before applying the dense layer. Then 13
rounds of Stacked vector – Row Major multiplication are
performed. The 13 vectors of interleaved results are rotated
and added to form a single interleaved vector of dimension
100. The vector is then squared using a single multiplication.
Finally, Interleaved vector – Row Major multiplication is
used to obtain the final result in sparse format.

LoLa computes the entire network in only 2.2 seconds

which is 11× faster than CryptoNets 2.3 and 93× faster
than CryptoNets. Table 2 shows a summary of the perfor-
mance of different methods. In the supplementary material
we show the dependence of the performance on the number
of processor cores. We provide two additional versions of
LoLa. The first, LoLa-Dense, uses a dense representation
as input and then transforms it to a convolutional represen-
tation using HE operations. Then it proceeds similarly to
LoLa in subsequent layers. It performs a single prediction in
7.2 seconds. We provide more details on this solution in the
supplementary material. The second version, LoLa-Small
is similar to Lola-Conv but has only a convolution layer,
square activation and a dense layer. This solution has an
accuracy of only 96.92% but can make a prediction in as
little as 0.29 seconds.

4.4. Secure Networks for CIFAR

The Cifar-10 data-set (Krizhevsky & Hinton, 2009) presents
a more challenging task of recognizing one of 10 different
types of objects in an image of size 3× 32× 32 . For this
task we train a convolutional neural network that is depicted
in Figure 1. The exact details of the architecture are given in
the supplementary material. For inference, adjacent linear
layers were collapsed to form a network with the following
structure: (i) 8× 8× 3 convolutions with a stride of (2, 2)
and 83 maps (ii) square activation (iii) 6× 6× 83 convolu-
tion with stride (2, 2) and 163 maps (iv) square activation
(v) dense layer with 10 output maps. The accuracy of this
network is 74.1%. This network is much larger than the
network used for MNIST by CryptoNets. The input to this
network has 3072 nodes, the first hidden layer has 16268
nodes and the second hidden layer has 4075 nodes (com-
pared to 784, 845, and 100 nodes respectively for MNIST).
Due to the sizes of the hidden layers, implementing this
network with the CryptoNet approach of using the SIMD
representation requires 100’s GB of RAM since a message
has to be memorized for every node. Therefore, this ap-
proach is infeasible on most computers.

For this task we take a similar approach to the one presented
in Section 4.3. The image is encoded using the convolution
representation into 3 × 8 × 8 = 192 messages. The con-
volution layer is implemented using the convolution vector
– row major matrix-vector multiplication technique. The
results are combined into a single message using rotations
and additions which allows the square activation to be per-
formed with a single point-wise multiplication. The second
convolution layer is performed using row major-dense vec-
tor multiplication. Although this layer is a convolution layer,
each window of the convolution is so large that it is more
efficient to implement it as a dense layer. The output is

9The accuracy is not reported in Boemer et al. (2018). However,
they implement the same network as in Dowlin et al. (2016).
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Table 1. Message size, message representation and operations in each layer of the LoLa inference solution on MNIST. The input size
format is number of vectors × dimension.

Layer Input size Representation LoLa operation

5× 5 convolution layer 25× 169 convolution convolution vector – row major multiplication
5× 169 dense combine to one vector using 4 rotations and additions

square layer 1× 845 dense square

dense layer
1× 845 dense stack vectors using 8 rotations and additions
1× 6760 stacked stacked vector – row major multiplication
13× 8 interleave combine to one vector using 12 rotations and additions

square layer 1× 100 interleave square
dense layer 1× 100 interleave interleaved vector – row major
output layer 1× 10 sparse

Table 2. MNIST performance comparison. Solutions are grouped by accuracy levels.

Method Accuracy Latency

FHE–DiNN100 96.35% 1.65 (Bourse et al., 2017)

LoLa-Small 96.92% 0.29

CryptoNets 98.95% 205 (Dowlin et al., 2016)

nGraph-HE 98.95%9 135 (Boemer et al., 2018)

Faster-CryptoNets 98.7% 39.1 (Chou et al., 2018)

CryptoNets 2.3 98.95 24.8

HCNN 99% 14.1 (Badawi et al., 2018)

LoLa-Dense 98.95% 7.2

LoLa 98.95% 2.2

Figure 1. The structure of the network used for CIFAR classification.
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a sparse vector which is converted into a dense vector by
point-wise multiplications and additions which allows the
second square activation to be performed with a single point-
wise multiplication. The last dense layer is implemented
with a row major-dense vector technique again resulting in
a sparse output.

LoLa uses plain-text modulus p = 2148728833 ×
2148794369×2149810177 (the factors are combined using
the Chinese Reminder Theorem) and n = 16384. During
the computation, LoLa uses 12 GB of RAM for a single
prediction. It performs a single prediction in 730 seconds
out of which the second layer consumes 711 seconds. The
bottleneck in performance is due to the sizes of the weight
matrices and data vectors as evident by the number of pa-
rameters which is > 500, 000, compared to < 90, 000 in
the MNIST network.

5. Private Inference using Deep
Representations

Homomorphic Encryptions have two main limitations when
used for evaluating deep networks: noise growth and mes-
sage size growth. Every encrypted message contains some
noise and every operation on encrypted message increases
the noise level. When the noise becomes too large, it is
no longer possible to decrypt the message correctly. The
mechanism of bootstrapping (Gentry, 2009) can mitigate
this problem but at a cost of a performance hit. The message
size grows with the size of the network as well. Since, in
its core, the HE scheme operates in Zp, the parameter p has
to be selected such that the largest number obtained during
computation would be smaller than p. Since every multipli-
cation might double the required size of p, it has to grow
exponentially with respect to the number of layers in the
network. The recently introduced HEAAN scheme (Cheon
et al., 2017) is more tolerant towards message growth but
even HEAAN would not be able to operate efficiently on
deep networks.

We propose solving both the message size growth and the
noise growth problems using deep representations: Instead
of encrypting the data in its raw format, it is first converted,
by a standard network, to create a deep representation. For
example, if the data is an image, then instead of encrypting
the image as an array of pixels, a network, such as AlexNet
(Krizhevsky et al., 2012), VGG (Simonyan & Zisserman,
2014), or ResNet (He et al., 2016), first extracts a deep rep-
resentation of the image, using one of its last layers. The
resulting representation is encrypted and sent for evaluation.
This approach has several advantages. First, this representa-
tion is small even if the original image is large. In addition,
with deep representations it is possible to obtain high ac-
curacies using shallow networks: in most cases a linear
predictor is sufficient which translates to a fast evaluation

with HE. It is also a very natural thing to do since in many
cases of interest, such as in medical image, training a very
deep network from scratch is almost impossible since data
is scarce. Hence, it is a common practice to use deep rep-
resentations and train only the top layer(s) (Yosinski et al.,
2014; Tajbakhsh et al., 2016).

To test the deep representation approach we used AlexNet
(Krizhevsky et al., 2012) to generate features and trained a
linear model to make predictions on the CalTech-101 data-
set (Fei-Fei et al., 2006).10 In the supplementary material
we provide a summary of the data representations used for
the CalTech-101 dataset. Since the CalTech-101 dataset is
not class balanced, we used only the first 30 images from
each class where the first 20 where used for training and
the other 10 examples where used for testing. The obtained
model has class-balanced accuracy of 81.6%. The inference
time, on the encrypted data, takes only 0.16 seconds when
using the dense vector – row major multiplication. We
note that such transfer learning approaches are common in
machine learning but to the best of our knowledge were
not introduced as a solution to private predictions with He
before.

The use of transfer learning for private predictions has its
limitations. For example, if a power-limited client uses
private predictions to offload computation to the cloud, the
transfer learning technique would not be useful because
most of the computation is on the client’s side. However,
there are important cases in which this technique is useful.
For example, consider a medical institution which trains
a shallow network on deep representations of private x-
ray images of patients, and would like to make its model
available for private predictions. However, to protect its
intellectual property, it is not willing to share its model.
In that case, it can use this technique to provide private
predictions while protecting the privacy of the model.

6. Conclusions
The problem of privacy in machine learning is gaining im-
portance due to legal requirements and greater awareness
to the benefits and risks of machine learning systems. In
this study, we presented two HE based solutions for pri-
vate inference that address key limitations of previous HE
based solutions. We demonstrated both the ability to oper-
ate on more complex networks as well as lower latency on
networks that were already studied in the past.

The performance gain is mainly due to the use of multi-
ple representations during the computation process. This
may be useful in other applications of HE. One example is
training machine learning models over encrypted data. This
direction is left for future study.

10More complex classifiers did not improve accuracy.
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