
Chapter 7

One-Way Functions

As mentioned several times so far, one-way functions and trapdoor functions play
a fundamental role in modern cryptography. In this chapter, we elaborate on these
functions. More specifically, we introduce the topic in Section 7.1, overview and
discuss some candidate one-way functions in Section 7.2, elaborate on integer
factorization algorithms and algorithms to compute discrete logarithms in Sections
7.3 and 7.4, address hard-core predicates in Section 7.5, briefly introduce the notion
of elliptic curve cryptography in Section 7.6, and conclude with final remarks in
Section 7.7.

7.1 INTRODUCTION

In Section 2.1.1 and Definition 2.1, we introduced the notion of a one-way function.
More specifically, we said that a function f : X → Y is one way if f(x) can
be computed efficiently for all x ∈ X , but f−1(y) cannot be computed efficiently
for y ∈R Y (see Figure 2.1). We also noted that this definition is not precise in
a mathematically strong sense and that we must first introduce some complexity-
theoretic basics (mainly to define more precisely what we mean by saying that we
can or we cannot compute efficiently). Because we have done this in Chapter 6, we
are now ready to better understand and more precisely define the notion of a one-way
function. This is done in Definition 7.1.

Definition 7.1 (One-way function) A function f : X → Y is one way if the
following two conditions are fulfilled:

• The function f is easy to compute, meaning that f(x) can be computed
efficiently for all x ∈ X . Alternatively speaking, there is a probabilistic
polynomial-time (PPT) algorithmA that outputs A(x) = f(x) for all x ∈ X .
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• The function f is hard to invert, meaning that it is not known how to efficiently
compute f−1(f(x)) for all x ∈ X or f−1(y) for y ∈R Y . Alternatively
speaking, there is no known PPT algorithm A that outputs A(f(x)) =
f−1(f(x)) for all x ∈ X or A(y) = f−1(y) for y ∈R Y .

X and Y are often set to {0, 1}∗. In either case, A is not required to find the
correct x; it is only required to find some inverse of y (if the function f is injective,
then the only inverse of y is x).

Another way to express the second condition in Definition 7.1 is to say that
any PPT algorithm A attempting to invert the one-way function on an element in its
range will succeed with no more than a negligible probability (i.e., smaller than any
polynomial in the size of the input, where the probability is taken over the elements
in the domain of the function and the internal coin tosses of A). The statement is
probabilistic (i.e.,A is not unable to invert the function, but it has a very low success
probability). More formally,

Pr[A(f(x), 1n) ∈ f−1(f(x))] ≤ 1
p(n)

for every PPT algorithmA, all x ∈ X , every polynomial p, and all sufficiently large
n (with n representing the binary length of x). In this notation, the algorithm A is
given f(x) and the security parameter 1n (expressed in unary representation). The
only purpose of the second argument is to allow A to run in time polynomial in the
length of x, even if f(x) is much shorter than x. This rules out the possibility that a
function is considered one way only because the inverting algorithm does not have
enough time to print the output. Typically, f is a length-preserving function, and in
this case the auxiliary argument 1n is redundant.

Note that the notation given earlier is not standard, and that there are many
notations used in the literature to express the same idea. For example, the following
notion is also frequently used in the literature.

Pr[(f(z) = y : x u← {0, 1}n; y ← f(x); z ← A(y, 1n)] ≤ 1
p(n)

It basically says the same thing: if x is selected uniformly from {0, 1}n, y is
assigned f(x), and z is assigned A(y, 1n), then the probability that f(z) equals y is
negligible.

A few words concerning the notion of negligible probability are in place. We
consider the success probability of a PPT algorithm A to be negligible if it is bound
by a polynomial fraction. It follows that repeating A polynomially (in the input



One-Way Functions 171

length) many times yields a new algorithm that also has a success probability that is
negligible. Put in other words, events that occur with negligible probability remain
negligible even if the experiment is repeated polynomially many times. This property
is important for complexity-theoretic considerations.

In some literature, a distinction is made between strong one-way functions (as
discussed earlier) and weak one-way functions, and it is then shown that the former
can be constructed from the latter. The major difference is that whereas one only
requires some nonnegligible fractions of the inputs on which it is hard to invert a
weak one-way function, a strong one-way function must be hard to invert on all but
a negligible fraction of the inputs. For the purpose of this book, we don’t delve into
the details of this distinction, and hence we don’t distinguish between strong and
weak one-way functions accordingly.

If X and Y are the same, then a one-way function f : X → X represents a
one-way permutation. Hence, one-way permutations are just special cases of one-
way functions, namely ones in which the domain and the range are the same.

Having in mind the notion of a one-way function, the notion of a trapdoor
function (or trapdoor one-way function) is simple to explain and understand. Ac-
cording to Definition 2.2, a one-way function f : X → Y is a trapdoor function if
there exist some extra information—called the trapdoor—with which f can be in-
verted efficiently—that is, there is a (deterministic or probabilistic) polynomial-time
algorithm A that outputs A(f(x)) = f−1(f(x)) for all x ∈ X or A(y) = f−1(y)
for y ∈R Y . Consequently, the notion of a trapdoor function can be defined by
prepending the words “unless some extra information (i.e., the trapdoor) is known”
in the second condition of Definition 7.1. More formally, a trapdoor function can be
defined as suggested in Definition 7.2.

Definition 7.2 (Trapdoor function) A one-way function f : X → Y is a trapdoor
function if there is a trapdoor information t and a PPT algorithm I that can be used
to efficiently compute x′ = I(f(x), t) with f(x′) = f(x).

Many cryptographic functions required to be one way (or preimage resistant)
output bitstrings of fixed size. For example, cryptographic hash functions are re-
quired to be one way and output strings of 128, 160, or more bits (see Chapter 8).
Given such a function, one may be tempted to ask how expensive it is to invert it
(i.e., one may ask for the computational complexity of inverting the hash function).
Unfortunately, the (complexity-theoretic) answer to this question is not particularly
useful. If the cryptographic hash function outputs n-bit values, then 2n tries are
always sufficient to invert the function or to find a preimage for a given hash value
(2n−1 tries are sufficient on the average). Because 2n is constant for any fixed n ∈ N,
the computational complexity to invert the hash function is O(1), and hence one
cannot say that inverting it is intractable. If we want to use complexity-theoretic
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arguments, then we cannot live with a constant n. Instead, we must make n variable,
and it must be possible to let n grow arbitrarily large. Consquently, we must work
with potentially infinite families1 of one-way functions (i.e., at least one for each n).
The notion of a family of one-way functions is formally captured in Definition 7.3.

Definition 7.3 (Family of one-way function) A family of functions F = {fi :
Xi → Yi}i∈I is a family of one-way functions if the following three conditions
are fulfilled:

• I is an infinite index set;

• Every i ∈ I selects a function fi : Xi → Yi from the family;

• Every fi : Xi → Yi is a one-way function according to Definition 7.1.

A family of one-way functions {fi : Xi → Yi}i∈I is a family of one-way
permutations if every fi is a permutation over the domain Xi (i.e., Yi = Xi).
Furthermore, it is a family of trapdoor functions if every fi is a trapdoor function
with trapdoor information ti.

In this book, we often talk about one-way functions and trapdoor functions
when we should actually be talking about families of such functions. We make
this simplification because we think that it is more appropriate and simpler to
understand. In either case, we want to emphasize that there is no function—or
family of functions—known to be one way (in a mathematically strong sense)
and that the current state of knowledge in complexity theory does not allow us to
prove the existence of one-way functions, even using more traditional assumptions
as P �= NP . Hence, only a few functions are conjectured to be one way. These
candidate one-way functions are overviewed and discussed next.

7.2 CANDIDATE ONE-WAY FUNCTIONS

There are a couple of functions that are conjectured to be one way. For example,
a symmetric encryption system that encrypts a fixed plaintext message yields such
a function.2 For example, the use of DES in this construction can be shown to be
one way assuming that DES is a family of pseudorandom functions. Another simple
example is the integer multiplication function f : (x, y) �→ xy for x, y ∈ Z. As
discussed later in this chapter, no efficient algorithm is known to find the prime
factors of a large integer.

1 In some literature, the terms “classes,” “collections,” or “ensembles” are used instead of “families.”
2 For example, UNIX systems use such a function to store the user passwords in protected form.
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The following three functions, which are conjectured to be one way, have
many applications in (public key) cryptography:

• Discrete exponentiation function;

• RSA function;

• Modular square function.

The fact that these functions are conjectured to be one way means that we
don’t know how to efficiently invert them. The best algorithms we have at hand are
super-polynomial—that is, they have an exponential or subexponential running time
behavior (some of the algorithms are briefly overviewed in Sections 7.3 and 7.4).
The three candidate one-way functions are addressed next.

7.2.1 Discrete Exponentiation Function

From the real numbers, we know that the exponentiation and logarithm functions
are inverse to each other and that they can both be computed efficiently. This makes
us believe that this must be the case in all algebraic structures. There are, however,
algebraic structures in which we can compute the exponentiation function efficiently,
but in which no known algorithm can be used to efficiently compute the logarithm
function. For example, let p be a prime number and g be a generator (or primitive
root) of Z

∗
p. The function

Expp,g : Zp−1 −→ Z
∗
p

x �−→ gx

is then called discrete exponentiation function to the base g. It defines an isomor-
phism from the additive group 〈Zp−1,+〉 to the multiplicative group 〈Z∗

p, ·〉—that
is, Expp,g(x + y) = Expp,g(x) · Expp,g(y). Because Expp,g is bijective, it has an
inverse function that is defined as follows:

Logp,g : Z
∗
p −→ Zp−1

x �−→ logg x

It is called the discrete logarithm function. For any x ∈ Z
∗
p, the discrete

logarithm function computes the discrete logarithm of x to the base g, denoted by



174 Contemporary Cryptography

logg x. This value refers to the element of Zp−1 to which g must be set to the power
of in order to get x.

Expp,g is efficiently computable, for example, by using the square-and-
multiply algorithm (i.e., Algorithm 3.3). Contrary to that (and contrary to the log-
arithm function in the real numbers), no efficient algorithm is known to exist for
computing discrete logarithms for sufficiently large prime numbers p. All known al-
gorithms have a super-polynomial running time, and it is widely believed that Logp,g

is not efficiently computable.
Earlier in this chapter we said that—in order to use complexity-theoretic

arguments—we must consider families of one-way functions. In the case of the
discrete exponentiation function, we may use p and g as indexes for an index set
I . In fact, I can be defined as follows:

I := {(p, g) | p ∈ P; g a generator of Z
∗
p}

Using this index set, we can formally define the Exp family (i.e., the family of
discrete exponentiation functions)

Exp := {Expp,g : Zp−1 −→ Z
∗
p, x �−→ gx}(p,g)∈I

and the Log family (i.e., the family of discrete logarithm functions)

Log := {Logp,g : Z
∗
p −→ Zp−1, x �−→ logg x}(p,g)∈I .

If we want to employ the Exp family as a family of one-way functions, then
we must make sure that it is hard to invert, meaning that it is not known how
to efficiently compute discrete logarithms. This is where the discrete logarithm
assumption (DLA) as formally expressed in Definition 7.4 comes into play.

Definition 7.4 (Discrete logarithm assumption) Let Ik := {(p, g) ∈ I | |p| = k}
for k ∈ N,3 p(k) be a positive polynomial, and A(p, g, y) be a PPT algorithm. Then
the DLA says that there exists a k0 ∈ N, such that

3 This means that the index set I consists of disjoint subsets Ik (i.e., I =
�

k∈N
Ik). Consequently,

k may be considered the security parameter of i = (p, g) ∈ Ik.



One-Way Functions 175

Pr[A(p, g, y) = Logp,g(y) : (p, g) u← Ik; y u← Z
∗
p] ≤

1
p(k)

for all k ≥ k0.

In this terminology, the PPT algorithm A models an adversary who tries to
compute the discrete logarithm of y to the base g, or, equivalently, to invert the
discrete exponentiation function Expp,g. Furthermore, the term

y
u← Z

∗
p

suggests that y is uniformly distributed, meaning that all y ∈ Z
∗
p occur with the same

probability (i.e., Pr[y] = 1/|Z∗
p| = 1/(p − 1)). This is just another way of saying

that y ∈R Z
∗
p. Similarly, the term

(p, g) u← Ik

suggests that the pair (p, g) is uniformly distributed, meaning that all (p, g) ∈
Ik occur with the same probability. Consequently, the probability statement of
Definition 7.4 can be read as follows: if we randomly select both the index i =
(p, g) ∈ Ik with security parameter k and y = gx, then the probability that the PPT
algorithmA successfully computes and outputs Logp,g(y) is negligible (i.e., smaller
than any polynomial bound). This means that Expp,g cannot be inverted byA for all
but a negligible fraction of input values.

Even if the security parameter k is very large, there may be pairs (p, g) such
that A can correctly compute Logp,g(y) with a probability that is nonnegligible. For
example, if p − 1 has only small prime factors, then there is an efficient algorithm
due to Steve Pohlig and Martin E. Hellman that can be used to compute the discrete
logarithm function [1]. In either case, the number of such special pairs (p, g) is
negligibly small as compared to all keys with security parameter k. If (p, g) is
randomly (and uniformly) chosen from Ik, then the probability of obtaining such
a pair (i.e., a pair for which A can compute discrete logarithms) is negligibly small.

Under the DLA, the Exp family represents a family of one-way functions.
It is used in many public key cryptosystems, including, for example, the ElGamal
public key cryptosystem (see Sections 14.2.3 and 15.2.2) and the Diffie-Hellman key
exchange protocol (see Section 16.3). Furthermore, several problems are centered
around the DLA and the conjectured one-way property of the discrete exponential
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function. The most important problems are the discrete logarithm problem (DLP)
captured in Definition 7.5, the (computational) Diffie-Hellman problem (DHP) cap-
tured in Definition 7.6, and the Diffie-Hellman decision problem (DHDP) captured
in Definition 7.7. The problems can be specified in arbitrary cyclic groups.

Definition 7.5 (Discrete logarithm problem) Let G be a cyclic group, g be a gen-
erator of G, and h be an arbitrary element in G. The DLP is to determine an integer
x such that gx = h.

Definition 7.6 (Diffie-Hellman problem) LetG be a cyclic group, g be a generator
in G, and x and y be two integers smaller than the order of G (i.e., x, y < |G|). The
terms gx and gy then represent two elements in G. The DHP is to determine gxy

from gx and gy.

Definition 7.7 (Diffie-Hellman decision problem) Let G be a cyclic group, g be a
generator of G, and r, s, and t be three positive integers smaller than the order of G
(i.e., r, s, t < |G|). The terms gr, gs, gt, and grs then represent elements in G. The
DHP is to determine whether grs or gt solves the DHP for gr and gs. Alternatively
speaking, the DHDP is to distinguish the triples 〈gr, gs, grs〉 and 〈gr, gs, gt〉 when
they are given in random order.

When giving all of these problems, it may be interesting to know how they are
related. This is done by giving complexity-theoretic reductions from one problem to
another (see Definition 6.10 for the notion of a polynomial-time reduction). In fact,
in can be shown that DHP ≤P DLP (i.e., the DHP polytime reduces to the DLP) and
that DDHP ≤P DHP (i.e., the DDHP polytime reduces to the DHP) in an arbitrary
finite Abelian group. So the DLP is the hardest among the problems (i.e., if one is
able to solve the DLP, then one is trivially able to solve the DHP and the DDHP).
The exact relationship and the complexity of the corresponding proof (if it is known
in the first place) depend on the actual group in use. In many cyclic groups, the
DLP and the DHP have been shown to be computationally equivalent [2, 3]. There
are, however, groups in which one can solve the DDHP in polynomial time, but the
fastest known algorithm to solve the DHP requires subexponential time. In order to
better understand the DLP and the underlying DLA, it is worthwhile to have a look
at the currently available algorithms to compute discrete logarithms. This is done in
Section 7.4.

7.2.2 RSA Function

Let n be the product of two distinct primes p and q (i.e., n = pq), and e be relatively
prime to φ(n). Then the function
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RSAn,e : Z
∗
n −→ Z

∗
n

x �−→ xe

is called the RSA function. It computes the eth power for x ∈ Z
∗
n. To compute the

inverse function, it is required to compute eth roots. If the inverse d of e modulo
φ(n) is known, then the following RSA function can be used to compute the inverse
of RSAn,e:

RSAn,d : Z
∗
n −→ Z

∗
n

x �−→ xd

RSAn,e can be efficiently computed by modular exponentiation. In order to
compute RSAn,d, however, one must know either d or the prime factors of n (i.e.,
p and q). As of this writing, no polynomial-time algorithm to compute RSAn,d is
known if p, q, or d are not known. Hence, RSAn,d can only be computed if any of
these values is known, and hence these values represent trapdoors for RSAn,e.

If we want to turn the RSA function into a family of one-way functions, then
we must define an index set I . This can be done as follows:

I := {(n, e) | n = pq; p, q ∈ P; p �= q; 0 < e < φ(n); (e, φ(n)) = 1}

Using this index set, the family of RSA functions can be defined as follows:

RSA := {RSAn,e : Z
∗
n −→ Z

∗
n, x �−→ xe}(n,e)∈I

This family of RSA functions is called the RSA family. Because each RSA
function RSAn,e represents a permutation over Z

∗
n, the RSA family represents a

family of one-way (or trapdoor) permutations.
It is assumed and widely believed that the RSA family is a family of trapdoor

permutations, meaning that RSAn,e is hard to invert (for sufficiently large and
properly chosen n). The RSA assumption formally expressed in Definition 7.8 makes
the one-way property of the RSA family explicit.
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Definition 7.8 (RSA assumption) Let Ik := {(n, e) ∈ I | n = pq; |p| = |q| = k}
for k ∈ N, p(k) ∈ Z[N] be a positive polynomial, andA(p, g, y) be a PPT algorithm.
Then the RSA assumption says that there exists a k0 ∈ N, such that

Pr[A(n, e, y) = RSAn,d(y) : (n, e) u← Ik; y u← Z
∗
n] ≤ 1

p(k)

for all k ≥ k0.

Again, the PPT algorithm A models the adversary who tries to compute
RSAn,d(y) without knowing the trapdoor information. The RSA assumption may
be interpreted in an analogous way to the DLA. The fraction of keys (n, e) in Ik , for
whichA has a significant chance to succeed, must be negligibly small if the security
parameter k is sufficiently large.

There is also a stronger version of the RSA assumption known as the strong
RSA assumption. The strong RSA assumption differs from the RSA assumption
in that the adversary can select the public exponent e: given a modulus n and a
ciphertext c, the adversary must compute any plaintext m and public exponent e
such that c = me (mod n). For the purpose of this book, we don’t use the strong
RSA assumption anymore.

If we accept the RSA assumption, then the RSA problem (RSAP) captured in
Definition 7.9 is intractable.

Definition 7.9 (RSA problem) Let (n, e) be a public key and c = me (mod n).
The RSAP is to determinem (i.e., the eth root of c modulo n) if the private key (n, d)
and the factorization of n (i.e., p and q) are not known.

The RSA assumption and the RSAP are at the core of many public key cryp-
tosystems, including, for example, the RSA public key cryptosystem (see Sections
14.2.1 and 15.2.1). Because the prime factors of n (i.e., p and q) represent a(nother)
trapdoor for RSAn,d (in addition to d), somebody who is able to factor n is also able
to compute RSAn,d and to invert RSAn,e accordingly. Consequently, one must make
the additional assumption that it is computationally infeasible (for the adversary one
has in mind) to factor n. This is where the integer factoring assumption (IFA) as
formally expressed in Definition 7.10 comes into play.

Definition 7.10 (Integer factoring assumption) Let Ik := {n ∈ I | n = pq; |p| =
|q| = k} for k ∈ N, p(k) be a positive polynomial, and A(n) be a PPT algorithm.
Then the IFA says that there exists a k0 ∈ N, such that

Pr[A(n) = p : n u← Ik] ≤ 1
p(k)
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for all k ≥ k0.

If we accept the IFA, then the integer factoring problem (IFP) captured in
Definition 7.11 is intractable.

Definition 7.11 (Integer factoring problem) Let n be a positive integer (i.e., n ∈
N). The IFP is to determine the prime factors of n (i.e., to determine p1, . . . , pk ∈ P
and e1, . . . , ek ∈ N) such that

n = pe1
1 · · · pek

k .

The IFP is well defined, because every positive integer can be factored
uniquely up to a permutation of its prime factors (see Theorem 3.5). Note that the
IFP must not always be intractable, but that it must be possible to easily find an
instance of the IFP that is intractable.

Again using complexity-theoretic arguments, one can show that RSAP ≤P

IFP (i.e., the RSAP polytime reduces to the IFP). This means that one can invert
the RSA function if one can solve the IFP. The converse, however, is not known
to be true (i.e., it is not known whether there exists a simpler way to invert the
RSA function than to solve the IFP). In order to better understand the RSAP and the
underlying RSA assumption, it is worthwhile to have a look at the currently available
integer factorization algorithms. This is done in Section 7.3.

7.2.3 Modular Square Function

Similar to the exponentiation function, the square function can be computed and
inverted efficiently in the real numbers, but it is not known how to invert it efficiently
in a cyclic group. If, for example, we consider Z

∗
n, then modular squares can be

computed efficiently, but modular square roots can only be computed efficiently
if the prime factorization of n is known. In fact, it can be shown that computing
square roots in Z

∗
n and factoring n are computationally equivalent. Consequently,

the modular square function looks like a candidate one-way function. Unfortunately,
the modular square function (in its general form) is neither injective nor surjective.
It can, however, be made injective and surjective (and hence bijective) if the domain
and range are both restricted to QRn (i.e., the set of quadratic residues or squares
modulo n), with n being a Blum integer (see Definition 3.33). The function

Squaren : QRn −→ QRn

x �−→ x2
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is then called square function. It is bijective, and hence the inverse function

Sqrtn : QRn −→ QRn

x �−→ x1/2

exists and is called the square root function. Either function maps an element of
QRn to another element of QRn. The function represents a permutation.

To turn the square function into a one-way function (or one-way permutation,
respectively), we must have an index set I . Taking into account that n must be a
Blum integer, the index set can be defined as follows:

I := {n | n = pq; p, q ∈ P; p �= q; |p| = |q|; p, q ≡ 3 (mod4)}

Using this index set, we can define the following family of square functions:

Square := {Squaren : QRn −→ QRn, x �−→ x2}n∈I

This family is called the Square family, and the family of inverse functions can
be defined as follows:

Sqrt := {Sqrtn : QRn −→ QRn, x �−→ x1/2}n∈I

It is called the Sqrt family. The Square family of trapdoor permutations is
used by several public key cryptosystems, including, for example, the Rabin public
key cryptosystem (see Section 14.2.2). For every n ∈ I , the prime factors p and q
represent a trapdoor. Hence, if we can solve the IFP, then we can trivially invert the
Square family. We look at algorithms to solve the IFP next.

7.3 INTEGER FACTORIZATION ALGORITHMS

Many algorithms can be used to solve the IFP.4 They can be divided into two broad
categories:

4 http://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html
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• Special-purpose algorithms depend on and take advantage of special proper-
ties of the integer n to be factored, such as its size, the size of its smallest
prime factor p, or the prime factorization of p− 1.

• Contrary to that, general-purpose algorithms depend on nothing (i.e., they
work for all values of n).

In practice, algorithms of both categories are combined and used one after
another. If one is given a large integer n with no clue about the size of its prime
factors, then one usually employs special-purpose algorithms that are optimized
to find small prime factors before one turns to the less efficient general-purpose
algorithms.

7.3.1 Special-Purpose Algorithms

Examples of special-purpose algorithms include trial division, P±1, Pollard Rho,
and the elliptic curve method (ECM).

7.3.1.1 Trial Division

If n is composite, then at least one prime factor is at most
√
n. Consequently, one

can always factorize n by trying to divide it by all primes up to �
√
n�. This simple

algorithm is called trial division. Its running time is O(p), where p is the smallest
prime factor of n (i.e., the one that is found first). In the worst case, this equals to

O(
√
n) = O(eln

√
n) = O(eln(n1/2))

if the smallest prime factor of n is about
√
n (this occurs if n has two prime factors

of about the same size). Consequently, the worst-case running time function of the
trial division integer factorization algorithm is exponential in lnn. If, for example,
n is 1,024 bits long, then the algorithm requires

√
21024 = (21024)1/2 = 21024/2 = 2512

trial divisions in the worst case. This is certainly beyond what is feasible today, and
hence the trial division algorithm can only be used to factorize n if n is sufficiently
small (e.g., smaller than 1012) or smooth (i.e., it has only small prime factors). In
either case, the space requirements of the trial division algorithm are negligible.



182 Contemporary Cryptography

7.3.1.2 P±1

In the 1970s, John M. Pollard developed and proposed two special-purpose integer
factorization algorithms that are optimized to find small prime factors. The first
algorithm is known as P−1.

Let n be the integer to be factorized and p be some (yet unknown) prime factor
of n, for which p − 1 is B-smooth—that is, p − 1 is the product of possibly many
prime numbers that are smaller than or equal to B (see Definition 3.28). If k is the
product of all prime numbers that are smaller than or equal toB, then k is a multiple
of p− 1. Now consider what happens if we take a small integer (e.g. a = 2) and set
it to the power of k. Fermat’s Little Theorem (i.e., Theorem 3.7) tells us that

ak ≡ 1 (mod p),

and hence p divides ak − 1. On the other hand, p must also divide n (remember that
p is supposed to be a prime factor of n), and hence p divides the greatest common
divisor of ak − 1 and n (i.e., p | gcd(ak − 1, n)). Note that k might be very large,
but ak − 1 can always be reduced modulo n.

Note that one knows neither the prime factorization of p − 1 nor the bound
before one starts the algorithm. So one has to begin with an initially chosen bound
B and perhaps increase it during the execution of the algorithm. Consequently, the
algorithm is practical only ifB is not too large. For the typical size of prime numbers
in use today (e.g., for the RSA public key cryptosystem), the probability that one can
factorize n using Pollard’s P−1 algorithm is pretty small. Nevertheless, the mere
existence of the algorithm is a reason that some cryptographic standards require
RSA moduli to have prime factors p for which p − 1 has at least one large prime
factor. In the literature, such primes are frequently called strong.

In either case, the running time of Pollard’s P−1 algorithm is O(|t|), where t
is the largest prime power dividing p−1. Pollard’s P−1 algorithm was later modified
and a corresponding P+1 algorithm was proposed.

7.3.1.3 Pollard Rho

The second algorithm developed and proposed by Pollard in the 1970s is known
as Pollard Rho. The basic idea is to have the algorithm successively draw random
numbers less than n. If p is a (yet unknown) prime factor of n, then it follows from
the birthday paradox (see Section 8.1) that after about p1/2 =

√
p rounds one has

drawn xi and xj with xi �= xj and xi ≡ xj (mod p). If this occurs, one knows that
p divides the greatest common divisor of xi − xj and n (i.e., p | gcd(xi − xj , n)).
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The Pollard Rho algorithm has a running time of

O(
√
p)

where p is the smallest prime factor of n, or

O( 4
√
n) = O(n1/4) = O(eln(n1/4))

in the worst case. Consequently, the Pollard Rho algorithm is an algorithm that is
exponential in lnn, and as such it can only be used if p is small compared to n. For
the size of the integers that are used today, the algorithm is still impractical. It was,
however, used on the factorization of the eighth Fermat number

F8 = 228
+ 1 = 2256 + 1,

which unexpectedly turned out to have a small prime factor. In either case, the space
requirements of the Pollard Rho algorithm are small.

7.3.1.4 ECM

In the 1980s, Hendrik W. Lenstra developed and proposed the ECM [4]. It can
be best thought of as a generalization or randomized version of Pollard’s P−1
algorithm. The success of Pollard’s P−1 algorithm depends on n having a divisor
p such that p − 1 is smooth. If no such p exists, then the algorithm fails. The ECM
randomizes the choice, replacing the group Zp used in Pollard’s P−1 algorithm by
a random (or pseudorandom) elliptic curve over GF (p).

The ECM has a subexponential running time. Its average-case (worst-case)
running time is Lp[12 ,

√
2] (Ln[12 , 1]). The worst case occurs when p is roughly

√
n,

which is often the case when one uses RSA or some other public key cryptosystem.
So, although the ECM cannot be considered a threat against the standard RSA public
key cryptosystem that uses two primes, it must nevertheless be taken into account
when one implements the so-called multiprime RSA system, where the modulus
may have more than two prime factors.

7.3.2 General-Purpose Algorithms

Examples of general-purpose integer factorization include continued fraction, the
quadratic sieve (QS), and the number field sieve (NFS).
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7.3.2.1 Continued Fraction

The continued fraction algorithm was developed and proposed in the 1970s [5]. It
has a subexponential running time and was the the fastest integer factoring algorithm
in use for quite a long time (i.e., until the QS was developed).

7.3.2.2 QS

In the 1980s, Carl Pomerance developed and proposed the QS [6]. Like many other
general-purpose integer factorization algorithms, the QS is based on an idea that is
due to Fermat. If we have two integers x and y with

x �= ±y (mod n)

and

x2 ≡ y2 (mod n), (7.1)

then we can factorize n with a success probability of 1/2. Let n = pq, and we want
to use x and y to find p or q. First, we note that x2 ≡ y2 (mod n) means that

x2 − y2 = (x − y)(x+ y) = 0 (mod n).

Because n = pq, the four following cases are possible:

1. p|x− y and q|x+ y;

2. p|x+ y and q|x− y;

3. p|x− y and q|x− y (but neither p nor q divides x+ y);

4. p|x+ y and q|x+ y (but neither p nor q divides x− y).

All of these cases are equally probable and occur with a probability of 1/4. If
we then compute

d = gcd(x− y, n),

then d refers to p in case 1, q in case 2, n in case 3, and 1 in case 4. Hence, in cases
1 and 2 we have indeed found a prime factor of n. So the success probability is in
fact 1/2 (as mentioned earlier).
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So the question (most general-purpose integer factorization algorithms try to
answer) is how to find two integers x and y that satisfy equivalence (7.1).

The general approach is to choose a set of t relatively small primes S =
{p1, p2, . . . , pt} (the so-called factor base) and to proceed with the following two
steps:

• First, one computes bi ≡ a2
i (mod n) for arbitrary ai, and this value is

expressed as the product of powers of the primes in S. In this case, bi can
be represented as a vector in a t-dimensional vector space. This step is called
the relation collection stage, and it is highly parallelizable.

• Second, if we have collected enough (e.g., t+ 1) values for bi, then a solution
of equivalence (7.1) can be found by performing the Gaussian elimination
on the matrix B = [bi]. This step is called the matrix step and cannot be
parallelized. It works on a huge (sparse) matrix and eventually comes up with
a nontrivial factor of n.

Obviously, the choice of the number of primes of S is very important for the
performance of the QS. If it is too small, then the relation collection stage may take
very long (because a very small proportion of numbers factor over a small set of
primes). If, however, it is too large (and too many primes are put into S), then the
matrix may become too large to be reduced efficiently.

In either case, the QS has a subexponential running time of Ln[12 , c] for some
constant c. As mentioned later, a variation of the QS was used in 1994 when RSA-
129 was successfully factorized.

7.3.2.3 NFS

The NFS was developed and proposed in the 1990s (e.g., [7]). It is conceptually
similar to the QS and is currently the fastest general-purpose integer factorization
algorithm. It has a running time of Ln[13 , c] for c = 1.923 and was used in 1999
to factorize RSA-155 (see the following section). Furthermore, there are several
variations of it, including, for example, the special number field sieve (SNFS) and
the general number field sieve (GNFS).

7.3.3 State of the Art

When the RSA public key cryptosystem was published, a famous challenge was
posted in the August 1977 issue of Scientific American [8]. In fact, US$100 were
offered to anyone who could decrypt a message that was encrypted using a 129-
digit integer acting as modulus. The number became known as RSA-129, and it was
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not factored until 1994 (with a distributed implementation of a variation of the QS
algorithm [9]). Just to give an impression of the size of such an integer, RSA-129
and its prime factors are reprinted here:

RSA− 129 = 1143816257578888676692357799761466120102182967212
4236256256184293570693524573389783059712356395870
5058989075147599290026879543541

= 3490529510847650949147849619903898133417764638493
387843990820577
∗
3276913299326670954996198819083446141317764296799
2942539798288533

Today, the RSA Factoring Challenge is sponsored by RSA Laboratories to
learn more about the actual difficulty of factoring large integers of the type used in
the RSA public key cryptosystem.5 In 1999, a group of researchers completed the
factorization of the 155-digit (512-bit) RSA Challenge Number, and in December
2003, researchers at the University of Bonn (Germany) completed the factorization
of the 174-digit (576-bit) RSA Challenge Number. The next numbers to factor (in
the RSA Factoring Challenge) are 640, 704, 768, 896, 1,024, 1,536, and 2,048 bits
long.

In the past, a couple of proposals have been made to use specific hardware
devices to speed up integer factoring algorithms. For example, TWINKLE is a
device that can be used to speed up the first step in the QS algorithm—that is, find
pairs (x, y) of distinct integers that satisfy equivalence (7.1) [10]. TWIRL is a more
recent proposal [11].

7.4 ALGORITHMS FOR COMPUTING DISCRETE LOGARITHMS

There are basically two categories of algorithms to solve the DLP (and to compute
discrete logarithms accordingly):

• Algorithms that attempt to exploit special characteristics of the group in which
the DLP must be solved;

5 http://www.rsasecurity.com/rsalabs/challenges/factoring/
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• Algorithms that do not attempt to exploit special characteristics of the group
in which the DLP must be solved.

Algorithms of the first category are often called special-purpose algorithms,
whereas algorithms of the second category are called generic algorithms. Let’s start
with the second category of algorithms.

7.4.1 Generic Algorithms

Let G be a cyclic group and g be a generator in this group. The difficulty of
computing discrete logarithms to the base g in G then depends on whether we know
the order of the group (i.e., |G|). If we don’t know |G|, then the Baby-step giant-
step algorithm is the best we can do. It has a running time of O(

√
|G| log |G|) and

memory requirements ofO(
√
|G|). If, however, we know |G|, then we can do better.

In this case, we can use Pollard’s ρ-algorithm, which is slightly more efficient than
the Baby-step giant-step algorithm. In fact, Pollard’s ρ-algorithm has a running-time
complexity ofO(

√
|G|) and requires almost no memory. It has been shown that this

running time is a lower bound for any general-purpose algorithm to compute discrete
logarithms in a cyclic group (if the factorization of the group order is not known)
[12].

If, in addition to |G|, we also know the factorization of |G|, then we can use
the Pohlig-Hellman algorithm, which has a running time ofO(

√
q log q) (where q is

the largest prime factor of |G|). This result implies, for example, that in DLP-based
cryptosystems for Z

∗
p, p − 1 must have at least one large prime factor (as already

mentioned in Section 7.2.1).

7.4.2 Special-Purpose Algorithms

If we are talking about special-purpose algorithms, then we are talking about specific
groups. If, for example, we are talking about Z

∗
p, then there are basically two

algorithms to solve the DLP in a subexponential running time.

• The index calculus algorithm has a running time of Lp[12 , c] for some small
constant c;

• The NFS algorithm can also be used to compute discrete logarithms. Remem-
ber that it has a running time of Lp[13 , 1.923].

Consequently, the NFS algorithm is the algorithm of choice to solve the DLP
in Z

∗
p.
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7.4.3 State of the Art

Given that the NFS algorithm can be used to factor integers and compute discrete
logarithms in Z

∗
p, we note that the state of the art in computing discrete logarithms

in Z
∗
p is comparable to the state of the art in factoring integers. This suggests that we

must also work with 1,024-bit prime numbers p. Special care must be taken that p−1
does not have only small prime factors. Otherwise, the Pohlig-Hellman algorithm [1]
can be used to efficiently compute discrete logarithms.

If we are not working in Z
∗
p, then the special-purpose algorithms mentioned

earlier do not work, and the state of the art in computing discrete logarithms is worse
than the state of the art in factoring integers. In this case, we have to use general-
purpose algorithms (that do not have subexponential running times). This fact is, for
example, exploited by elliptic curve cryptography.

7.5 HARD-CORE PREDICATES

The fact that f is a one-way function does not mean that f(x) necessarily hides
all information about x. Nevertheless, it seems likely that there is at least some
information (e.g., one bit) about x that is hard to guess from f(x), given that x in its
entirety is hard to compute. One may ask if it is possible to point to specific bits of
x that are hard to compute and how hard to compute they are. These questions can
be answered in the affirmative. A number of results are known that give a particular
bit of x, which is hard to guess given f(x) for some particular one-way functions.

A hard-core predicate for f is a predicate about x that cannot be computed
from f(x). More formally, a hard-core predicate B can be defined as suggested in
Definition 7.12 and illustrated in Figure 7.1.

Definition 7.12 (Hard-core predicate) Let f : X → Y be a one-way function. A
hard-core predicate of f is a Boolean predicate B : X → {0, 1}, such that the
following two conditions hold:

• B(x) can be computed efficiently for all x ∈ X . Alternatively speaking, there
is a PPT algorithm A that on input x outputs B(x) for all x ∈ X .

• It is not known how to efficiently compute B(x) for all y = f(x) ∈ Y .
Alternatively speaking, there is no known PPT algorithmA that on input f(x)
outputs B(x) for all x ∈ X .

Again, there are many possibilities to express the same properties. For exam-
ple, the second condition can also be expressed as follows: for every PPT A and for
all constants c, there exists a k0 such that
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Figure 7.1 A hard-core predicate of a one-way function.

Pr[A(f(x)) = B(x)] <
1
2

+
1
kc

for all k > k0, where the probability is taken over over the random coin tosses of
A and random choices of x of length k (i.e., the success probability of A is only
negligibly smaller than 1/2). It is simple and straightforward to extend the notion of
a hard-core predicate for a family of one-way functions.

Historically, the notion of a hard-core predicate was first captured by Manuel
Blum and Silvio Micali in a paper on pseudorandom number generation [13]. In fact,
they showed that the most significant bit (MSB) is a hard-core predicate for the Exp
family. This is in contrast to the RSA family, for which the least significant bit (LSB)
represents a hard-core predicate [14]. In the context of probabilistic encryption,
Oded Goldwasser and Micali showed that Square has a hard-core predicate, as well
[15]. Andrew C. Yao6 generalized the notion of a hard-core predicate and showed
that given any one-way function f , there is a predicate B(x) that is as hard to guess
from f(x) as to invert f [16].

6 In 2000, Andrew Chi-Chih Yao won the Turing Award for his seminal work on the theory of
computation in general, and pseudorandom number generation, cryptography, and communication
complexity in particular.
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7.6 ELLIPTIC CURVE CRYPTOGRAPHY

Most public key cryptosystems get their security from the assumed intractability
of inverting a one-way function (as discussed earlier). Against this background, it
is important to note that inverting a one-way function is not necessarily equally
difficult in all algebraic structures one may think of. If we look at inverting the
discrete exponentiation function in Z

∗
p, then there are known algorithms that are sub-

exponential. This need not be the case in all possible groups (in which the function
is assumed to be one way). In fact, ECC has become popular (and important)
mainly because groups have been found in which subexponential algorithms to
invert the discrete exponentiation function (i.e., compute discrete logarithms) are
not known to exist.7 This basically means that one has to use a general-purpose (and
exponential-time) algorithm to compute discrete logarithms and break the security
of the corresponding public key cryptosystem accordingly. Note, however, that it is
not known whether subexponential algorithms in these groups exist; we simply don’t
know them.

The fact that subexponential algorithms are not known to exist has the positive
side effect (from the cryptographer’s viewpoint) that the resulting elliptic curve cryp-
tosystems are equally secure with smaller key sizes than their conventional counter-
parts. This is important for implementations in which key sizes and performance are
important issues (e.g., smartcards). For example, to reach the security level of 1,024
(2,048) bits in a conventional public key cryptosystem (e.g., RSA), it is estimated
that 163 (224) bits are sufficient for an elliptic curve cryptosystem (e.g., [17]). This
is a nonnegligible factor that can speed up implementations considerably.

Most elliptic curve cryptosystems are based on the elliptic curve discrete
logarithm problem (ECDLP) in such a group. Similar to the DLP, the ECDLP can
be defined as suggested in Definition 7.13. Again, the ECDLP is assumed to be
computationally intractable.

Definition 7.13 (Elliptic Curve Discrete Logarithm Problem) Let E(Fq) be an
elliptic curve over Fq , P be a point on E(Fq) of order n, and Q be another point
on E(Fq). The ECDLP is to determine an integer x (with 0 ≤ x < n), such that
Q = xP .

Based on the intractability assumption of the ECDLP, Neal Koblitz [18] and
Victor Miller [19] independently proposed using elliptic curves to implement public
key cryptosystems based on the DLP. This proposal dates back to the mid 1980s,
and since then many public key cryptosystems have been reformulated in an elliptic

7 An interesting online tutorial about elliptic curves in general, and ECC in particular, is available at
http://www.certicom.com/resources/ecc tutorial/ecc tutorial.html.
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curve setting. Examples include Diffie-Hellman, ElGamal, and DSA. Today, many
books address ECC and elliptic curve cryptosystems in detail (e.g., [20–23]). You
may refer to any of these books if you want to get more involved in elliptic curves
and ECC.

Since 1985, the ECDLP has received considerable attention from leading
mathematicians around the world. It is currently believed that the ECDLP is much
harder than integer factorization or DLP. More specifically, there is no algorithm
known that has a subexponential running time in the worst case. A few vulnera-
bilities and potential attacks should be considered with care and kept in mind when
elliptic curves are used. For example, it was shown that the ECDLP can be reduced to
the DLP in extension fields of Fq , where the index-calculus methods can be applied
[24]. However, this reduction algorithm is only efficient for a special class of elliptic
curves known as supersingular curves. Moreover, there is a simple test to ensure that
an elliptic curve is not supersingular and hence not vulnerable to this attack. Conse-
quently, it is possible to avoid them in the first place. Some other vulnerabilities and
potential attacks can be found in the literature.

A distinguishing feature of ECC is that each user may select a different elliptic
curve E(Fq)—even if all users use the same underlying finite field Fq . From a
security viewpoint, this flexibility is advantageous (because the elliptic curve can be
changed periodically). From a practical viewpoint, however, this flexibility is also
disadvantageous (because it makes interoperability much more difficult and because
it has led to a situation in which the field of ECC is tied up in patents). Note that there
is (more or less) only one way to implement a conventional public key cryptosystem,
such as RSA, but usually many ways to implement an elliptic curve cryptosystem.
In fact, one can work with different finite fields, different elliptic curves over
these fields, and a wide variety of representations of the elements on these curves.
Each choice has advantages and disadvantages, and one can construct an efficient
curve for each application. Consequently, the relevant standardization bodies, such
as the Institute of Electrical and Electronics Engineers (IEEE),8 ISO/IEC JTC1,
the American National Standards Institute (ANSI), and the National Institute of
Standards and Technology (NIST), are working hard to come up with ECC standards
and recommendations that are commonly accepted and widely deployed.9

7.7 FINAL REMARKS

In this chapter, we elaborated on one-way functions and trapdoor functions. More
specifically, we defined the notion of a family of one-way functions or trapdoor

8 http://grouper.ieee.org/groups/1363
9 http://www.certicom.com/resources/standards/eccstandards.html
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functions, and we overviewed and discussed some functions that are conjectured to
be one way or trapdoor. More specifically, we looked at the discrete exponentiation
function, the RSA function, and the modular square function. We further looked
at hard-core predicates and algorithms for factoring integers or computing discrete
logarithms. Curiously, factoring integers and computing discrete logarithms seem
to have essentially the same difficulty (and computational complexity), at least as
indicated by the current state-of-the-art algorithms.

Most public key cryptosystems in use today are based on one (or several) of the
conjectured one-way functions mentioned earlier. This is also true for ECC, which
works in cyclic groups in which known special-purpose algorithms to compute dis-
crete logarithms do not work. From a practical viewpoint, ECC is interesting because
it allows us to use smaller keys (compared to other public key cryptosystems). This is
advantageous especially when it comes to implementing cryptographic systems and
applications in environments that are restricted in terms of computational resources
(e.g., smartcards). For the purpose of this book, however, we don’t make a major
distinction between public key cryptosystems that are based on the DLP and public
key cryptosystems that are based on the ECDLP.

In either case, it is sometimes recommended to use cryptosystems that com-
bine different candidate one-way functions in one way or another. If one of these
functions then turns out not to be one way, then the other functions still remain and
keep on securing the cryptosystem. Obviously, this strategy becomes useless if all
functions turn out not to be one way.
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