
김호원

부산대
정보보호 및 IoT 연구실,

사물인터넷연구센터
2018.10

- Reinforcement Learning -

2

I. 개요

3

Machine Learning Definition

Supervised/Unsupervised/RL

참고: Reinforcement Learning by Chandra Prakash

4

Machine Learning Type:

Supervised/Unsupervised/RL

참고: Reinforcement Learning by Chandra Prakash

5

Reinforcement(강화)의 의미:
 Occurrence of an event, in the proper relation to a response, that

tends to increase the probability that the response will occur
again in the same situation.

 Response에적절한형태로 event를발생시킬경우, 해당
Response는동일한상황에서다시발생할확률이높아짐

Reinforcement learning :

 즉,강화학습은 agent가동적환경에서, trial-and-error를통해
행동을학습하는문제임

 강화학습은 “correctness의표준을제시하지않으면서” 학습자의
성과를평가하는 “learning feedback”특성을가짐

Supervised/Unsupervised/RL

참고: Reinforcement Learning by Chandra Prakash

6

Reinforcement Learning 구성 요소

강화학습의 주요 구성 요소

참고: Reinforcement Learning by Chandra Prakash

7

Reward function
 RL problem에서목표를정의함

 Policy는이목표를성취하기위해변경됨

Value function
 Reward function indicates what is good in an immediate sense

while a value function specifies what is good in the long run.

• Reward function: 즉각적인보상, value function: 장기적관점에서
유익한것이무엇인지알려줌

 Value of a state is the total amount of reward an agent can
expect to accumulate over the future, starting from that state.

• State의 value: agent가기대하는총 reward의합

Model of the environment
 Environment에대한 mimic behavior를예측함

 Used for planning

 If we know current state and action, then predict the resultant
next state and next reward

강화학습의 주요 구성 요소

참고: Reinforcement Learning by Chandra Prakash

8

Agent/Environment Interface, Steps for RL

강화학습의 주요 구성 요소

참고: Reinforcement Learning by Chandra Prakash

[policy가짐]

1. The agent observes
an input state

2. An action is
determined by a
decision making
function (policy)

3. The action is
performed

4. The agent receives a
scalar reward or
reinforcement from
the environment

5. Information about
the reward given for
that state / action
pair is recorded

9

Silent Features of RL

강화학습의 주요 구성 요소

참고: Reinforcement Learning by Chandra Prakash

10

Silent Features of RL

강화학습의 주요 구성 요소

참고: Reinforcement Learning by Chandra Prakash

11

(정확한 최적 데이터 기반) 지도학습 vs. 강화학습의 평가 피드백

강화학습의 주요 구성 요소

Supervised vs. evaluative feedback is concerned with how the learner is informed of right and wrong

answers.

A requirement for applying supervised learning methods is the availability of examples with known optimal

decisions. (지도 학습에서는 알려진 최적 결정을 내릴 수 있는 예제, 즉 데이터가 있어야 함)

In the patron-assignment problem, a host-in-training could work as an apprentice to a much more

experienced supervisor to learn how to handle a range of situations. If the apprentice can only learn from

supervised feedback, however, she would have no opportunities to improve after the apprenticeship ends.

(경험이 많은 superviser의 지도가 없으면 향상이 없을 것임 O_O)

By contrast, evaluative feedback provides the learner with an assessment of the effectiveness of the

decisions that she made; no information is available on the appropriateness of alternatives.

(강화학습은 평가 피드백 ! 학습자 자신이 내린 결정의 효율성에 대한 평가를 제공함)

For example, a host might learn about the ability of a server to handle unruly patrons by trial and error: when

the host makes an assignment of a difficult customer, it is possible to tell whether things went smoothly

with the selected server, but no direct information is available as to whether one of the other servers

might have been a better choice. The central problem in the field of reinforcement learning is addressing

the challenge of evaluative feedback.

“Reinforcement learning improves behaviour from evaluative feedback from https://www.nature.com/articles/nature14540

12

Associative & Non Associative Tasks

강화학습의 주요 구성 요소

13

II. Bandit Problem

14

N-armed bandit problem

Bandits Problem
II. Bandit Problem

15

Two-armed bandit problem
 This tutorial contains a simple example of how to build a policy-

gradient based agent that can solve the multi-armed bandit
problem

The Bandits
 Here we define our bandits. For this example we are using a four-

armed bandit. The pullBandit function generates a random
number from a normal distribution with a mean of 0.

 The lower the bandit number, the more likely a positive reward
will be returned. We want our agent to learn to always choose
the bandit that will give that positive reward.

Bandits Problem
II. Bandit Problem

16

The Bandits
 Here we define our bandits. For this example we are using a four-armed bandit.

The pullBandit function generates a random number from a normal distribution
with a mean of 0.

 The lower the bandit number, the more likely a positive reward will be returned.
We want our agent to learn to always choose the bandit that will give that
positive reward.

#List out our bandits. Currently bandit 4 (index#3) is set to most often provide a positive reward.

bandits = [0.2,0,-0.2,-5]

num_bandits = len(bandits)

def pullBandit(bandit):

#Get a random number.

result = np.random.randn(1)

if result > bandit:

#return a positive reward.

return 1

else:

#return a negative reward.

return -1

Bandits Problem
II. Bandit Problem

17

Agent modeling
 The code below established our simple neural agent. It consists of a set of values

for each of the bandits. Each value is an estimate of the value of the return from
choosing the bandit. We use a policy gradient method to update the agent by
moving the value for the selected action toward the received reward.

tf.reset_default_graph()

#These two lines established the feed-forward part of the network. This does the actual

choosing.

weights = tf.Variable(tf.ones([num_bandits]))

chosen_action = tf.argmax(weights,0)

// weights가 총 4개의 항을 가지므로, argmax는 4개의 항 중에서 가장 큰 값을 갖는
index를 리턴함

Bandits Problem
II. Bandit Problem

18

Agent modeling
#The next six lines establish the training procedure.

We feed the reward and chosen action into the network to compute the loss, and use it to

update the network.

reward_holder = tf.placeholder(shape=[1],dtype=tf.float32)

action_holder = tf.placeholder(shape=[1],dtype=tf.int32)

responsible_weight = tf.slice(weights, action_holder, [1])

// weights 값에서 action_holder에 해당하는 값 1개를 추출함 (아래의 π에 해당함.

정책임)

loss = -(tf.log(responsible_weight)*reward_holder) // Loss = -log(π)*A

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)

update = optimizer.minimize(loss)

Bandits Problem
II. Bandit Problem

19

Training Agent
We will train our agent by taking actions in our environment, and receiving rewards.

Using the rewards and actions, we can know how to properly update our network in order to

more often choose actions that will yield the highest rewards over time.

total_episodes = 1000 #Set total number of episodes to train agent on.

total_reward = np.zeros(num_bandits) #Set scoreboard for bandits to 0.

e = 0.1 #Set the chance of taking a random action.

init = tf.initialize_all_variables()

Launch the tensorflow graph

with tf.Session() as sess:

sess.run(init)

i = 0

Bandits Problem
II. Bandit Problem

20

Training Agent
while i < total_episodes:

Choose either a random action or one from our network.

이를 보면, 원래는 chose_action(즉, weights 중에서 가장 큰 값을 갖는 것을

선택하는데, 변칙으로 e (0.1) 값보다 작을 경우, 아무거나 다른 것을 선택한다.

if np.random.rand(1) < e:

action = np.random.randint(num_bandits)

else:

action = sess.run(chosen_action)

reward = pullBandit(bandits[action]) #Get our reward from picking one of the bandits.

#Update the network.

_,resp,ww = sess.run([update,responsible_weight,weights],

feed_dict= {reward_holder: [reward], action_holder:[action]})

#Update our running tally of scores.

total_reward[action] += reward

if i % 50 == 0:

print "Running reward for the " + str(num_bandits) + " bandits: " + str(total_reward)

i+=1

Bandits Problem
II. Bandit Problem

21

Training Agent

Running reward for the 4 bandits: [1. 0. 0. 0.] Running

reward for the 4 bandits: [0. -2. -1. 38.]

…

Running reward for the 4 bandits: [-4. -7. 2. 720.]

Running reward for the 4 bandits: [-4. -7. 3. 769.]

Running reward for the 4 bandits: [-6. -8. 3. 814.]

Running reward for the 4 bandits: [-7. -7. 3. 858.]

The agent thinks bandit 4 is the most promising.... ...and

it was right!

Bandits Problem
II. Bandit Problem

22

