cps M0 U 24 malE S

— Reinforcement Learning -

by
.
AFEQIE{UIAH Al E-|
2018.10

Supervisec
B T

E Machine Learning Definition :

< Machine learning 1s a scientific discipline that 1s
concerned with the design and development of
algorithms that allow computers to learn based on
data, such as from sensor data or databases.

A major focus of machine learning research 1s to
automatically learn to recognize complex patterns and
make intelligent decisions based on data .

Zt11: Reinforcement Learning by Chandra Prakash

i
< '||I
rZ
o1
i
3

:

3

ead/RL

rvised/Onsupervis
E Machine Learning Type:
With respect to the feedback type to learner:

¥
———

- Supervised learning : Task Driven (Classification)
- Unsupervised learning : Data Driven (Clustering)

- Reinforcement learning —
“ Close to human learning.

“ Algorithm learns a policy of how to act in a given
environment.

“ Every action has some impact in the environment,
and the environment provides rewards that guides
the learning algorithm.

Zt11: Reinforcement Learning by Chandra Prakash

i
< '||I
rZ
o1
i
3

:

4

Supervised/Unsupervised/RL

B Reinforcement(Z=}h)<2] 2|0|: i
Occurrence of an event, in the proper relation to a response, that
tends to increase the probability that the response will occur
again in the same situation.

= Responselil & & st SEZ eventE %”‘ ANZE B2, olE
Responsec= =2 ot &S0l A CHAl A8

E Reinforcement learning is the problem faced by an

agent that learns behavior through trial-and-error
interactions with a dynamic environment.

< Reinforcement Learning is learning how to act in
order to maximize a numerical reward.

&3t

0|l

'S agent)t & 2B 0 A, trial-and-errorE S o

'Sote Mg
=]

J

ol

®

3 _Lon

= “correctnessl| == XMl AlGtAl
Jtot= “learning feedback” S &=

#11: Reinforcement Learning by Chandra Prakash

otO DO A-|” 6F§X|_O

RN —/

PIES

0% 0 02 JI¥
= tol Ol
2o 1o
g TF |

- =T

5

Environment

- Agent: Intelligent programs
- Environment: External condition
- Policy:
“Defines the agent’s behavior at a given time

A mapping from states to actions
-Lookup tables or simple function

Zt11: Reinforcement Learning by Chandra Prakash

2Rl

6 B e

P Reward function
= RL problemOild SEE Hol&
» Policy= 0| SHE &

® Value function

= Reward function indicates what is good in an immediate sense
while a value function specifies what is good in the long run,

« Reward function: S &0l 24t value function: & D& 2& 0l A
Faelst 20l 20X s

= Value of a state is the total amount of reward an agent can
expect to accumulate over the future, starting from that state.

« State2| value: agent’t J|Uiot= = reward2 &
E Model of the environment
= Environment0l CH St mimic behaviorE 0l &
= Used for planning

= |f we know current state and action, then predict the resultant
next state and next reward

Zt11: Reinforcement Learning by Chandra Prakash

7

gl

E Agent/Environment Interface Steps for RL

1. The agent observes i

> A t an input state
en
— J 2. An action is

determined by a

state | | reward [policy7H] action decision making
sl ay function (policy]

Y, 3. The action is

Environment |<s=—— performed

4. The agent receives a
scalar reward or

. . . . reinforcement from
Agent and environment interact at discrete time steps : 7=0,1,2,... the environment
Agent observes state at step f: s, €S 5. Information about
, the reward given for
produces action at step 7: a, € A(s,) that state / action

pair is recorded

eR

and resulting next state : s, |

f

. ol t1fc ru”o S —n
% g NGO @ar_ "

Zt11: Reinforcement Learning by Chandra Prakash

Eieydea
8 5 PUSAN NATIONAL UNIVERSITY

gets resulting reward : 7,

B Silent Features of RL

“ Set of problems rather than a set of techniques
= Without specifying how the task 1s to be achieved.

= “RL as a tool” point of view:
2 RL 1s training by rewards and punishments.

2 Train tool for the computer learning.

* The learning agent’s point of view:

2 RL 1s learning from trial and error with the world.

3 Eg. how much reward I much get 1f I get this.

Zt11: Reinforcement Learning by Chandra Prakash

9

:

iz
R

-l

214
2kl

» Reinforcement Learning uses Evaluative Feedback

“ Purely Evaluative Feedback
0 Indicates how good the action taken 1s.
J Not tell 1f 1t 1s the best or the worst action possible.
0 Basis of methods for function optimization.

“ Purely Instructive Feedback

D Indicates the correct action to take, independently of
the action actually taken.

2 Eg: Supervised Learning

Zt11: Reinforcement Learning by Chandra Prakash

i
< '||I
rZ
o1
i
3

:

10

151512 0| 220 M O A N
o2 gl T2 4S8 2 S
(st 2| g|o|E] 7|4 |5t vs, ZslstEe| Wt m =k

Supervised vs. evaluative feedback is concerned with how the learner is informed of right and wrong
answers.

A requirement for applying supervised learning methods is the availability of examples with known optimal
decisions. (K| SS0lM= 2d2 XN Z2HE HE + A= 0K, = GI0IEI I AO00F &)

In the patron-assignment problem, a host-in-training could work as an apprentice to a much more
experienced supervisor to learn how to handle a range of situations. If the apprentice can only learn from
supervised feedback, however, she would have no opportunities to improve after the apprenticeship ends.

(ZH0| 22 superviser®] XTIt $IOH 2A0| 81 R 0_0)

By contrast, evaluative feedback provides the learner with an assessment of the effectiveness of the
decisions that she made; no information is available on the appropriateness of alternatives.

(BeEts2 BILLEY S St XRM0l HE 282 g0l et IS M3

For example, a host might learn about the ability of a server to handle unruly patrons by trial and error: when
the host makes an assignment of a difficult customer, it is possible to tell whether things went smoothly
with the selected server, but no direct information is available as to whether one of the other servers
might have been a better choice. The central problem in the field of reinforcement learning is addressing
the challenge of evaluative feedback.

“Reinforcement learning improves behaviour from evaluative feedback from https://www.nature.com/articles/nature14540

11 N

" Assocliative :

2 Situation Dependent

0 Mapping from situation to the actions that are best in that
situation

® Non Associative:

3 Situation independent

4 No need for associating different action with different
situations.

0 Leamner either tries to find a single best action when the task
is stationary, or tries to track the best action as 1t changes
over time when the task 1s non stationary.

i
< '||I
rZ
o1
i
3

:

12

Il. Bandit Problem

-

Il. N-armed Bandit Problem

Bandits Problem

F N-armed bandit problem [

We have to choose from n different options or actions.
We will choose the one with maximum reward.

One-Bandit
“arms"

Pull arms sequentially so as to maximize the total
expected reward

It 1s non associative and evaluative

2Rl

14

Il. Bandit Problem
Ay

roblem | St 1.1) 1|)
P Two-armed bandit problem i

| = This tutorial contains a simple example of how to build a policy-
gradient based agent that can solve the multi-armed bandit

problem

¥ The Bandits
= Here we define our bandits. For this example we are using a four-

armed bandit. The pullBandit function generates a random
number from a normal distribution with a mean of 0.

= The lower the bandit number, the more likely a positive reward
will be returned. We want our agent to learn to always choose
the bandit that will give that positive reward.

gl

15

Il. Bandit Problem

¥ The Bandits
= Here we define our bandits. For this example we are using a four-armed bandit.
The pullBandit function generates a random number from a normal distribution

with a mean of 0.

= The lower the bandit number, the more likely a positive reward will be returned.
We want our agent to learn to always choose the bandit that will give that

positive reward.

#List out our bandits. Currently bandit 4 (index#3) is set to most often provide a positive reward.
bandits =[0.2,0,-0.2,-5]
num_bandits = len(bandits)
def pullBandit(bandit):
#Get a random number.
result = np.random.randn(1)
if result > bandit;
#return a positive reward.
return 1
else:
#return a negative reward.
return -1

gl

16

Il. Bandit Problem

| its Problem | S ————
E Agent modeling i

= The code below established our simple neural agent. It consists of a set of values
for each of the bandits. Each value is an estimate of the value of the return from
choosing the bandit. We use a policy gradient method to update the agent by
moving the value for the selected action toward the received reward.

tf.reset_default_graph()

#These two lines established the feed-forward part of the network. This does the actual
choosing.

weights = tf.Variable(tf.ones([num_bandits]))

chosen_action = tf.argmax(weights,0)

/| weightsZ} & 47l2] €+2 7} X| B2, argmaxe 472] € S0|AM 721 2 US4+
indexS 2|Elgt

gl

17

Il. Bandit Problem

- Bandits Problem SVl .47) i)
E Agent modeling i
#The next six lines establish the training procedure. |

We feed the reward and chosen action into the network to compute the loss, and use it to
update the network.

reward_holder = tf.placeholder(shape=[1],dtype=tf.float32)

action_holder = tf.placeholder(shape=[1],dtype=tf.int32)

responsible_weight = tf.slice(weights, action_holder, [1])

/I weights ZX0J| A{ action_holderdj] sHE5t= 2k 17HE =t (OfeH 2] mof| sHhet.
HauQl)

loss = -(tf.log(responsible_weight)*reward_holder) // Loss = -log(m)*A

optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
update = optimizer.minimize(loss)

gl

18

Il. Bandit Problem

Bandits Problem RS) NI

F Training Agent }
We will train our agent by taking actions in our environment, and receiving rewards.

| Using the rewards and actions, we can know how to properly update our network in order to
more often choose actions that will yield the highest rewards over time.

total_episodes = 1000 #Set total number of episodes to train agent on.
total_reward = np.zeros(num_bandits) #Set scoreboard for bandits to 0.
e=0.1 #Set the chance of taking a random action.

init = tf.initialize_all_variables()

Launch the tensorflow graph
with tf.Session() as sess:
sess.run(init)
=0

(0
I= '||I
rZ
3 0
i
3

:

19

’ | | Il. Bandit Problem
S Problem &
F Training Agent i
while i < total_episodes: |
Choose either a random action or one from our network.
0| B 2l = chose_action(Z, weights SO|A 7}F 2 42 A= A2
MEHSHEG], MO 2 o (0.1) ZHECH2HS 29, OLR7{LL CLE 248 MENHCE
if np.random.rand(1) < e:
action = np.random.randint(num_bandits)

else:
action = sess.run(chosen_action)

reward = pullBandit(bandits[action]) #Get our reward from picking one of the bandits.

#Update the network.
_,resp,ww = sess.run([update,responsible_weight,weights],

feed_dict= {reward_holder: [reward], action_holder:[action]})

#Update our running tally of scores.
total_reward[action] += reward

ifi % 50 == 0:

print "Running reward for the " + str(num_bandits) + " bandits: " + str(total_reward)
i+=1

gl

20

o M" ' : - — Il. Bandit Problem

E Training Agent

Running reward for the 4 bandits: [1. 0. 0. 0.] Running

reward for the 4 bandits: [0. -2. =-1. 38.]

Running reward for the 4 bandits: [-4. -7. 2. 720.]
Running reward for the 4 bandits: [-4. -7. 3. 769.]
Running reward for the 4 bandits: [-6. -8. 3. 814.]
Running reward for the 4 bandits: [-7. -7. 3. 858.]

The agent thinks bandit 4 is the most promising.... ...and

it was right!

21

22

