— AWS Greengrass -

=
Al
—3

H
ol
121 Eot HEHS

Z

Al

ik
A2 2IE{ AL]

HEHS U |

==

2018.11

hl
bre
o
<z
I}
L0

LT

BEY 9 XI5Y loT g

ol X
¢ ! X159 loT A4t
Information Security & Intelligent loT

A 53}

[AWS loT 712 2] I

I, AWS GreenGrass 712 I, AWS GreenGrass &1

HELE U Ky loT HAM
Information S ecurity & Intelligent laT

HELE U Ky loT HAM
Information Security & Intelligent laT

@

="

RULES ENGINE !
RAUAIKIE FH O e
AWS MH| A9} Gi7| St}

METHE| AMH| 2

C|H}O|A SDK C|dfo| A AH|o|ES) 0] :

S20|ME 1= U WZ, oj MQTT 2 HTTP 7|4t :

AlX| DEe 98t Hesq ClHIO|A Al :
; =]

HBYE 9 XI5 loT 47N
Information Security & Intelligent laT

Lo =

0oz

OiE2|FHIol

DEVICE SHADOW:!
HEY tHE = SH35t=
R :

L L L L L L L L L L L L T T T

Do

% 2
% &/ PUSAN NATIONAL UNIVERSITY

AWS Gree‘hﬁs .

I |0T°| =Yl _‘rl.kl QA MA I/1-|2I-/7|._._/=lkl

Three pillars of loT

Things Cloud Intelligence
Sense & Act Storage & Compute Insights & Logic — Action
o yuas 3 pgoray &11: AWS Greengrass Technical by Craig Williams saOe

5 I

AWS Greefigrass

. s o - — = i ‘
E 0TS 22 1M 24 r
— AWS loT®}l Edge computing

AWS loT

& Analytics
Kinesis
EMR

&3 Artificial Intelligence
Elastic Map Reduce
Machine Learning

Rekognition

Database
Redshift

m Management Tools
CloudWatch

Things Sland Intelligence

St or g

PUSAN NATIONAL UNIVERSITY

o e 8 ot A & 11: AWS Greengrass Technical by Craig Williams

Information Security & Intelligent loT 6

A\UYAS Greeﬂ‘ ass

E AWS loTE Cloud PIatform°' J S ¥

AWS loT is a fully managed cloud platform that lets connected devices easily and
securely interact with cloud applications and other devices.

Securely connect and manage ~ Extract and Filter data from Create Web and Mobile
any physical device across your devices and take action Applications that Interact with

multiple networks and protocols with custom Rules Devices reliably at any time

Vi s, / -1\\ /’/'—’\\\ / ~) ///A\\\ /A\\

/ (eo00) : « W { \ /)

© S & U ® @

\ o / \\\—//,,.- \‘—/' \.\u/, \ e * 4 \J//

Device Gateway Device SDK Device Security Registry Rules Engine Shadow

E AWS Greengrass | - E

— AWS Cloud 7|&2| edge computings} 7|&

Moving to the edge

@ I—

Things
HMEEY 9 XI5y loT @AM S A T
) ey . I e e
Do

AWS Gree‘hfa?s .

E AWS Greengrass | | S G
@ AWS Greengrass

Moving to the edge

AWS Greengrass extends AWS onto your devices, so they
can act locally on the data they generate, while still taking
advantage of the cloud.

HEEY 9 X5y loT §A
Information Security & Intelligent laT

AWS Gree‘Ms . e STk~ |
E AWS Greengrass §

— In Greengrass, Local Lambda, Local Device Shadows, Local Broker, Local Security can
be used |

@ AWS Greengrass

Features

A £ H» B

Local Local Data and :
. : Security
actions triggers state sync
Local Local Local AWS-grade
Lambda Functions Message Broker Device Shadows security

NEHYE o K|SH loT HRA ST oy
o |§fo-maunnqurityaglnmﬁgemcr @E = tl‘ E" 'o_l'l‘ J._I'_

PUSAN NATIONAL UNIVERSITY

10 T T T LR

AWS Gree A n SR
> e S = i =
E AWS Greengrass [

— loT ClHto]Aeto] g5t S4l(local eventoilchst tiLE SH)
— Cloud/AM {2} S410] S0+ st AEH0|AM = ME|A I}5

— 2|2 tjulo|2/A|0| Efllo] = 2fY

10T 28 MH|A BAE M

- E2 B4 A3

an

Benefits

<> B

Respond quickly Operate Simplified device Reduce the cost of AWS-grade
to local events offline programming loT applications security

YLD 9 XY loT BAY
Information Security & Intelligent laT 1 1

| €] f-’J’JQIi:JS:’)' O ‘,; , D o)
B GGC(Greengrass Core) L
—The runtime responsible for Lambda execution, messaging, device |
shadows, security, and for interacting directly with the cloud
— Required spec
* Min Single-Core 1GHz Processor
* Min 128MB RAM
- X86 & ARM
 Linux Kernel 4.4 wit OverlayFS enabled(Ubuntu or Amazon)

— Greengrass core takes advantage of your device’s compute, memory,
storage, and peripherals

— Any device that uses the loT Device SDK can be configured to
interact with Greengrass Core via the local network
* AWS loT Device SDK supports C, C++, Python 2.7, JavaScript
« SQLite 3+

BEEY U X5 loT AaA
Information Security & Intelligent T 1 2

:

;ﬂ‘;
@E‘ﬁ
4T
e
=0
1
Skl

AWS Gree

S =7 NER LA
B GGC(Greengrass Core) [
—Device work together locally |

« A Greengrass Group is a set of Cores and other devices configured to
communicate with one another

—Devices work together with the cloud

« Greengrass works with AWS loT to maintain long-lived connections and
process data via the rules engine

* Your Lambda functions can also interact directly with other AWS
services

YLD 9 XY loT BAY
Information Security & Intelligent laT 1 3

z[x
g3
e
SEl

AWS Gree
E AWS Greengrass 28

HEuE U XSy loT Ay
Information Security & Intelligent laT

Who 1s AWS Greengrass for?

Energy
. \ Consumer
Agriculture A\ :
' electronics
Communication Automotive

i ! - .
Medical ,i Finance, insurance,
ol i and more...

14 R

eefigras

| ®E AWS Greengras A} A R

ArCh ite Ctu re Data re-mapped, re-

published

LoRa Traffic

HELE U Ky loT HAM
Information Security & Intelligent laT

AWS LambeE

B Local Lambda | il ' }

—Lambdas are event-driven compute functions

« With Greengrass you can write Lambda functions in the cloud and
deploy them locally

— Greengrass runs Lambdas written in Python 2.7
* Invoke Lambda functions with messaging and shadow updates

—Local Lambda - What you can do
« Command and control
« Offline operation
« Data filtering & aggregation
* lterative learning

HESY 9 XI5 loT ¢
Information Security & Intelligent laT 1 7

ik
E_lu:

£
s
2 1g
2Kl

:

B Shadows ?
—JSON documents that represent state of your devices and Lambdas
—Define them however is logical to you : a car, an engine, a fleet
—Sync to the cloud or keep them local

® Shadows - What you can do
—Device state (current and desired)
—Granular device state (only synched to the cloud for debug)
—Dynamic configuration (e.g., numeric factors of an ML model)

BEEY U X5 loT AaA
Information Security & Intelligent T 1 8

:

;ﬂ‘;
@E‘ﬁ
4T
e
=0
1
Skl

Vlessaging}'Security W 1) i)
| i Local MQTT Pub/Sub messaging L
—Define subscriptions between publishers and subscribers |
—Apply MQTT topic filters

E Security
— Mutual authentication, both locally and also with the Cloud

— Certificate on your devices can be associated to SigV4 credentials in
the cloud

—You can directly call any AWS service from Greengrass
—Local GGC has its own root certificate
—Each device certificate is signed by the GGC'’s root certificate

— Greengrass core now uses the local CA and device certificate for
authentication

HELO U K5 0T BN
Information Security & Intelligent laT 1 9

i3]

Messagingi*Security |

E SigV4 (Signature version 4) .

1. StringToSign

[A string based on select request elements]

2. Signing Key

')
DateKey = HMAC-SHA256 ("AWS4" + "<SecretAccessKey>", "<yyyymmdd>")
DateRegionKey = HMAC-SHA256(DateKey, “<aws-region>"
DateRegionServiceKey = HMAC-SHA256(DateRegionKey, "<aws-service>"
SigningKey = HMAC-SHA256(DateRegionServiceKey, aws4_request”)

\ J

J

3. Signature

signature = Hex(HMAC-SHA256(SigningKey, StringToSign)) J

Signature Version 4 is the process to add authentication information to AWS requests
sent by HTTP.

For security, most requests to AWS must be signed with an access key, which
consists of an access key ID and secret access key. These two keys are commonly
referred to as your security credentials

HEEY 9 X5y loT §A
Information Security & Intelligent laT 20

: e | o \ -
a"\)J_JJI—X_/.a o) /" — TR

specified as Internet standard RFC 2104

uses hash function on the message:

HMAC, = Hash[(K*" XOR opad) ||

Hash[(K® XOR ipad) | IM) 1]

where K* is the key padded out to size

and opad, ipad are specified padding constants
overhead is just 3 more hash calculations than the
message needs alone
any hash function can be used

— eg. MD5, SHA-1, RIPEMD-160, Whirlpool

21

Ry
gI
{z=
z L1

g
Skl

HMAC-SHAZ
A
K™ ipad
5
l b bits b bits
Sl YO Yl L] L] L]
v n bits »| Hash
K'*‘ opad n bits
L J [':l H(S; I| M)
@
| b bits pad to b bits
L 7 Y
So
o Hash

n bits
| | HMAC(K, M)

b bits

H: embedded hash function (e.g.,
MD5, SHA-1, RIPEMD-160)

IV: initial value input to hash
function

M: message input to MHAC
(including the padding specified in
the embedded hash function)

Yi : ith block of M (0<=i<= L-1)

L : number of blocks in M

b: number of bits in a block

n : length of hash code produced
by embedded hash function

K : secret key recommended is (>=
n);

K* . K padded with zeros on the left
so that the result is b bits in length
ipad : 00110110 (0x36 in HEX)
repeated b/8 times

opad : 01011100 0x5C in HEX)
repeated b/8 times2

6 =]
e PUSAN NATIONAL UNIVERSITY

AT L UNIVERSI

K" ipad
2.
|
l b bits b bits b bits
Si YO Yl L] [] YL 1 8
Y 4
IV — ite Hash 5
ot opad n bits
L J - H(S, Il M) 6.
@®
| b bits pad to b bits 7.
¥ Y
So
v n bits Hash

l n bits

HMAC(K, M)

. Append zeros to the left end of K
to create a b—Dbit string K*

XOR (bitwise exclusive—OR) K*
with ipad to produce the b-bit
block Si.

. Append M to S..
. Apply H to the stream generated

in step 3.

XOR K* with opad to produce the
b-bit block S,

Append the hash result from step
4 to S,

Apply H to the stream generated

H[(K* @ipad) || M]n step 6 and output the result.

H[(K™ ©opad) || H[(K" ®ipad) || M]]

23

(B3
E_lu:

rZ
z 0
21
Skl

:

B Broker

Connect to

, GGC
Subscriber «Cert verified

locally

Receives
message

MEHY O XIS loT @A 4E X
(o Ethabiice i Bt
24 %,ONM_\,&E PUSAN NATIONAL UNIVERSITY

e - example

B Gas Turbine Filter Maintenance
— Each turbine consists of multiple devices/sensors
— Each turbine has a single Greengrass core
— Lambda functions have enough logic to perform edge machine learning
— Models and Lambda changes can be centrally updated

— Lambda filters data and using it's edge ML can determine when to request
maintenance/replacement of filters

— Only required data is sent up to AWS loT once an hour

Lambdas

HEHY Ol XS loT A =5 Y E" ot
o Inform.rmn,.:(wurny&\nn\lligvr\t \; % IE| T |_r = J__ll
2 5 ’%,ow_\yf‘g PUSAN NATIONAL UNIVERSITY

SATHSR M| WEE IR USH
RUTIER AHBOIE Y APMEF
howonkign@pusan.ac.kr

QJ&A—

26

