Data Mining
Classification: Alternative Techniques

Lecture Notes for Chapter 5
(PART 2)
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)

e Model is an assembly of
Inter-connected nodes
and weighted links

e Output node sums up
each of its input value
according to the weights
of its links

e Compare output node
against some threshold t

HYRY G XIS loT H7Y
IIIIII ation Security & Intelligent loT

Input
\:::\ 1
nodes ot Black box
R Output
~ node
> Y

Perceptron Model

Y=1Q WX —t) o
¥ =sigr(y wX, ~



General Structure of ANN
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Training ANN means learning
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Algorithm for learning ANN

e Initialize the weights (w,, Wy, ..., W,)

e Adjust the weights in such a way that the output
of ANN Is consistent with class labels of training
examples

— Objective function: E= Z[Y. —f(w, Xi)]2

— Find the weights w;’s that minimize the above
objective function

¢ e.g., backpropagation algorithm
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Support Vector Machines
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e Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines
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e One Possible Solution
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Support Vector Machines
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e Another possible solution
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Support Vector Machines
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e Other possible solutions
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Support Vector Machines

Bl
By — _
O
O
]
]

e
e
—

= —
—
— c——
—

—
e

e Which one is better? B1 or B2?

e How do you define better?
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Support Vector Machines
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e Find hyperplane maximizes the margin => B1 is better than B2
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Support Vector Machines
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Support Vector Machines

Wwx+b=1
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Support Vector Machines

e We want to maximize: Margin=

[W]

— Which is equivalent to minimizing: L(W)="—-

— But subjected to the following constraints:

(%)= if Wex. +b>1
-1 ifwex +b<—1

¢ This is a constrained optimization problem

— Numerical approaches to solve it (e.g., quadratic programming)
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Support Vector Machines

e What if the problem is not linearly separable?
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Support Vector Machines

e What if the problem is not linearly separable?
— Introduce slack variables

L - N
+ Need to minimize: L(w) = | w|f +C(Z§ik

¢ Subject to:

fxy=] ifwex +b D
—1 ifWexX +b<Cl+&>
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Nonlinear Support Vector Machines

e What if decision boundary is not linear?
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Nonlinear Support Vector Machines

e Transform data into higher dimensional space
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Ensemble Methods

e Construct a set of classifiers from the training
data

e Predict class label of previously unseen records
by aggregating predictions made by multiple
classifiers
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General Idea

o
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Why does it work?

e Suppose there are 25 base classifiers
— Each classifier has error rate, € = 0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes
a wrong prediction:

Z(Zﬂ '(1-£)®' =0.06

Ensemble classifier@l 4
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Examples of Ensemble Methods

e How to generate an ensemble of classifiers?

— Bagging
— Boosting
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Bagging

e Sampling with replacement
Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

e Build classifier on each bootstrap sample

e The probability of NOT being selected in any n
trials is (1 — 1/n)"
> The probability of being selected at least once in n trials is 1- (1 — 1/n)"

— The probability of being selected in some particular trial is 1/n.
— The probability of not being selected in some particular trial is 1-1/n.
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Boosting

e An iterative procedure to adaptively change
distribution of training data by focusing more on
previously misclassified records

— Initially, all N records are assigned equal
weights

— Unlike bagging, weights may change at the
end of boosting round
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Boosting

e Records that are wrongly classified will have their
weights increased

e Records that are classified correctly will have
their weights decreased

Original Data
Boosting (Round 1)
Boosting (Round 2)

1

4

5
Boosting (Round 3) @_
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* Instance 4 is hard to classify
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* Its weight is increased, therefore it is more
likely to be chosen again in subsequent rounds
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Algorithm AdaBoost.M1

1. initialize example weights w; = 1/N (i= 1..N)

2. form=1tot¢ /l t ... number of iterations
a) learn a classifier C,, using the current example weights
b) compute a weighted y w,of all incorrectly classified e,
_ err,, = i
error estimate z o, -

l-err,

1
s " :_h
c) compute a classifier weight ®.=7 1 o )
d) for all correctly classified examples e;: w, < w.e

=1 because weights

are normalized
||

[l 49 -

e) for all incorrectly classified examplese;: w, «—w.e™ <

f) normalize the weights w; so that they sum to 1

3. for each test example

a) try all classifiers C,,

update weights so
that sum of
correctly classified
examples equals
sum of incorrectly
classified examples

b) predict the class that receives the highest sum of weights « ,,

>
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Example: AdaBoost

W =

w Jexp™ if C(6) =,
Z, |exp? if Ci(x)=VY,

whereZ; is thenormalizaibnfactor

e Base classifiers: Cy, C,, ..., Cq

2REO|

2 classifier (e=0.93, ai=-3)0|A{ ai (classifier importance) log #f
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e Importance of a classifier:
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Example: AdaBoost

i W Jexp it Cy(x) =y,
! Z; |exp® ifCi(x)=Y,

J

:%2""15(0' (X)) # yj)

_Ilg
2 &

* There are three bits of intuition to take from this
graph:

* The classifier weight grows exponentially as the error
approaches 0. Better classifiers are given
exponentially more weight.

 The classifier weight is zero if the error rate is 0.5.
A classifier with 50% accuracy is no better than
random guessing, SO we ignore it.

« The classifier weight grows exponentially
negative as the error approaches 1. We give a
negative weight to classifiers with worse than 50%
accuracy.

+ “Whatever that classifier says, do the opposite!”.
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Example: AdaBoost

e Weight update:
i _ WY Jexp™ it Ci(x) =y,
| Z; |exp? ifCi(x) =V
whereZj IS thenormalizaonfactor

e If any intermediate rounds produce error rate
higher than 50%, the weights are reverted back
to 1/n and the resampling procedure is repeated

e Classification: .
C*(x)=arg maxZonﬁ(Cj (X) = y)
y =



Illustrating AdaBoost

Initial weights for each data point Data points
AL for training

- ~ /

. 0.1 0.1 0.1
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Data +| +|+ -1=1=-1-|-| +|+ >
Bl
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Round 1 o il

. o =109459
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Initial weight = 1/10 Training instance
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AdaBoost Example 2

S Reference) Data Mining und Maschinelles Lernen, Ensemble Methods from Darmstadt University
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AdaBoost Example 2

e Round 1
P +-
® - + 4
+| - — + -
+ — + -
€1=0.30
(Il=(3.42
HNEHW 2F +A-> error 200/ 0.30|H, MM EH 27 &
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AdaBoost Example 2

e Round 2

o
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AdaBoost Example 2

e Round 3
n
4
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AdaBoost Example 2

e Final Hypothesis

H =sign\ 0.42 + 0.635 + 0.92
final
+ X ZX 02 M7HK| 220} 2t24o| gipha 242 1121510]
= n — =577t 28 E
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