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Artificial Neural Network



Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)

 Model is an assembly of 

inter-connected nodes 

and weighted links

 Output node sums up 

each of its input value 

according to the weights 

of its links

 Compare output node 

against some threshold t
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General Structure of ANN

Activation

function

g(S
i 
)

S
i

O
i

I
1

I
2

I
3

w
i1

w
i2

w
i3

O
i

Neuron iInput Output

threshold, t

Input

Layer

Hidden

Layer

Output

Layer

x
1

x
2

x
3

x
4

x
5

y

Training ANN means learning 

the weights of the neurons
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Algorithm for learning ANN

 Initialize the weights (w0, w1, …, wk)

 Adjust the weights in such a way that the output 

of ANN is consistent with class labels of training 

examples

– Objective function:

– Find the weights wi’s that minimize the above 

objective function

 e.g., backpropagation algorithm
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Support Vector Machine



Support Vector Machines

 Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines

 One Possible Solution
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Support Vector Machines

 Another possible solution

B
2

12



Support Vector Machines

 Other possible solutions

B
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Support Vector Machines

 Which one is better? B1 or B2?

 How do you define better?
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Support Vector Machines

 Find hyperplane maximizes the margin => B1 is better than B2
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Support Vector Machines
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Support Vector Machines
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http://www.saedsayad.com/support_vector_machine.htm



Support Vector Machines

 We want to maximize:

– Which is equivalent to minimizing:

– But subjected to the following constraints:

 This is a constrained optimization problem

– Numerical approaches to solve it (e.g., quadratic programming)
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Support Vector Machines

 What if the problem is not linearly separable?
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Support Vector Machines

 What if the problem is not linearly separable?

– Introduce slack variables

 Need to minimize:

 Subject to: 
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Nonlinear Support Vector Machines

 What if decision boundary is not linear?
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Nonlinear Support Vector Machines

 Transform data into higher dimensional space
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기타

1.  Ensemble Methods

2.  Bagging

3.  Boosting



Ensemble Methods

 Construct a set of classifiers from the training 

data

 Predict class label of previously unseen records 

by aggregating predictions made by multiple

classifiers

24



General Idea
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Why does it work?

 Suppose there are 25 base classifiers

– Each classifier has error rate,  = 0.35

– Assume classifiers are independent

– Probability that the ensemble classifier makes 

a wrong prediction:
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Ensemble classifier인경우, 다수의 classifier를통합해서판단을내리므로, 이
ensemble classifier가잘못된판단을내리는경우는, 25개의기본분류기중에서, 반
이상의기본분류기가잘못예측할경우이며, 이때의오류율은이식과같음



Examples of Ensemble Methods

 How to generate an ensemble of classifiers?

– Bagging

– Boosting
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Bagging

 Sampling with replacement

 Build classifier on each bootstrap sample

 The probability of NOT being selected in any n 

trials is (1 – 1/n)n

 The probability of being selected at least once in n trials is 1− (1 – 1/n)n

– The probability of being selected in some particular trial is 1/n.

– The probability of not being selected in some particular trial is 1−1/n.

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7
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Boosting

 An iterative procedure to adaptively change 

distribution of training data by focusing more on 

previously misclassified records

– Initially, all N records are assigned equal 

weights

– Unlike bagging, weights may change at the 

end of boosting round
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Boosting

 Records that are wrongly classified will have their 

weights increased

 Records that are classified correctly will have 

their weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Instance 4 is hard to classify

• Its weight is increased, therefore it is more 

likely to be chosen again in subsequent rounds
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Algorithm AdaBoost.M1
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Example: AdaBoost

 Base classifiers: C1, C2, …, CT

 Error rate:

 Importance of a classifier: 
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오류율이큰 classifier (e=0.93, ai=-3)에서 ai (classifier importance) log 값은음의값
• 이때, 해당 instance가맞는경우, 다음을위한가중치크게올리고(예: exp-(-3.0)  exp(3.0)), 

• 해당 instance로틀리면 wi 가중치는작은값을곱해서 weight를 줄임 (exp(-3.0))

• 맞다고하는데왜다음을위해가중치를높이나? 이는오류율이 0.5를넘어서면(random한 것보다
못함), 믿을수없기때문에해당 instance가맞다고하더라도, 이와반대로행동(즉, 해당
instance에서맞음에도가중치높여서다음에다시테스트함)

exp(3.0)=20 ,   exp(-3.0)=0.05
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만약오류율이작은 classifier (e=0.12)에서 log 값은약 2.0를가짐. 

이때, 해당 instance가맞는경우, 가중치는작은값이곱해져서 (* exp(-2.0)) 줄고, 

instance로틀리면 wi 가중치는큰값이곱해져서 (* exp(2.0)) 증가함. 참고) exp(-2.0)~ 0.14,  exp(2.0)~ 7.4



Example: AdaBoost
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factor ionnormalizat  theis    where
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• There are three bits of intuition to take from this 

graph:

• The classifier weight grows exponentially as the error 

approaches 0. Better classifiers are given 

exponentially more weight.

• The classifier weight is zero if the error rate is 0.5. 

A classifier with 50% accuracy is no better than 

random guessing, so we ignore it.

• The classifier weight grows exponentially 

negative as the error approaches 1. We give a 

negative weight to classifiers with worse than 50% 

accuracy. 

• “Whatever that classifier says, do the opposite!”.

• 분류기가중치그래프값은분류기오류(e)이 0에가까워질
수록급격히커짐즉, 분류기품질이지수적으로높아짐

• 오류율이 0.5이면, 가중치그래프는 0이됨
• 오류율이 1에가까워지면, log 값(ai)은음수가됨. 이경우, 

분류가얘기한경우의반대로행동함(즉, Cj(xi)=yi 이라도, 즉
분류기가맞더라도가중치는적음 )



Example: AdaBoost

 Weight update:

 If any intermediate rounds produce error rate 

higher than 50%, the weights are reverted back 

to 1/n and the resampling procedure is repeated

 Classification:

factor ionnormalizat  theis    where
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Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Illustrating AdaBoost

Data points 

for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1
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Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744

Training instanceInitial weight = 1/10

(1) Error 나는경우, weight값큼.

-가틀렸음을알수있음

(2) 가장큰 Error  weight 값을
가지는이부분이틀렸음을알수
있음

(3) 가장큰 Error  weight 값을가지는
이부분이틀렸음을알수있음

Round 1,2,3의틀린부분 (1),(2),(3)과맞는부분을고려하여최종
classifier가만들어짐



AdaBoost Example 2
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Reference) Data Mining und Maschinelles Lernen, Ensemble Methods from Darmstadt University



AdaBoost Example 2
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 Round 1

첫번째분류수행 error 값이 0.3이며, h1처럼분류됨



AdaBoost Example 2
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 Round 2

두번째분류수행 error 값이 0.21이며, h2처럼분류됨
이때 (-)에의해 error가생김
다음번분류때에는 (-)를강조하여분류됨



AdaBoost Example 2
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 Round 3

세번째분류수행 error 값이 0.14이며, h3처럼분류됨



AdaBoost Example 2
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 Final Hypothesis

최종적으로세가지분류와각각의 alpha 값을고려하여
분류기가결정됨


