Homework \#2

Discrete Mathematics- $2^{\text {nd }}$ Semester 2018
Due: Wednesday Oct, 24, 2018, 03:00 PM
※Solve the following problems.

1. Problem 1 in Exercises 17.1 (p. 806)
2. Let $f(x), g(x) \in \mathbf{Z}_{7}[x]$ where $f(x)=2 x^{4}+2 x^{3}+3 x^{2}+$ $x+4$ and $g(x)=3 x^{3}+5 x^{2}+6 x+1$. Determine $f(x)+$ $g(x), f(x)-g(x)$, and $f(x) g(x)$.
3. Problem 2 in Exercises 17.1 (p. 806)
4. Determine all of the polynomials of degree 2 in $\mathbf{Z}_{2}[x]$.
5. Problem 6 in Exercises 17.1 (p. 806)
6. For each of the following pairs $f(x), g(x)$, find $q(x)$, $r(x)$ so that $g(x)=q(x) f(x)+r(x)$, where $r(x)=0$ or degree $r(x)<$ degree $f(x)$.
a) $f(x), g(x) \in \mathbf{Q}[x], \quad f(x)=x^{4}-5 x^{3}+7 x, \quad g(x)=$ $x^{5}-2 x^{2}+5 x-3$
b) $f(x), g(x) \in \mathbf{Z}_{2}[x], f(x)=x^{2}+1, g(x)=x^{4}+x^{3}+$ $x^{2}+x+1$
c) $f(x), g(x) \in \mathbf{Z}_{5}[x], f(x)=x^{2}+3 x+1, g(x)=x^{4}+$ $2 x^{3}+x+4$
7. Problem 7 in Exercises 17.1 (p. 806)
8. a) If $f(x)=x^{4}-16$, find its roots and factorization in $\mathbf{Q}[x]$.
b) Answer part (a) for $f(x) \in \mathbf{R}[x]$.
c) Answer part (a) for $f(x) \in \mathbf{C}[x]$.
d) Answer parts (a), (b), and (c) for $f(x)=x^{4}-25$.

5. Problem 1 in Exercises 17.2 (p. 813)

1. Determine whether or not each of the following polynomials is irreducible over the given fields. If it is reducible, provide a factorization into irreducible factors.
a) $x^{2}+3 x-1$ over $\mathbf{Q}, \mathbf{R}, \mathbf{C}$
b) $x^{4}-2$ over $\mathbf{Q}, \mathbf{R}, \mathbf{C}$
c) $x^{2}+x+1$ over $\mathbf{Z}_{3}, \mathbf{Z}_{5}, \mathbf{Z}_{7}$
d) $x^{4}+x^{3}+1$ over \mathbf{Z}_{2}
e) $x^{3}+3 x^{2}-x+1$ over \mathbf{Z}_{5}
2. Problem 12 in Exercises 17.2 (p. 814)
3. For Example 17.9, determine which equivalence class contains each of the following:
a) $x^{4}+x^{3}+x+1$
b) $x^{3}+x^{2}+1$
c) $x^{4}+x^{3}+x^{2}+1$

참고) Example 17.9
Let $s(x)=x^{2}+x+1 \in \mathbf{Z}_{2}[x]$. Then
a) $[0]=\left[x^{2}+x+1\right]=\left\{0, x^{2}+x+1, x^{3}+x^{2}+x,(x+1)\left(x^{2}+x+1\right), \ldots\right\}$ $=\left\{t(x)\left(x^{2}+x+1\right) \mid t(x) \in \mathbf{Z}_{2}[x]\right\}$
b) $[1]=\left\{1, x^{2}+x, x\left(x^{2}+x+1\right)+1,(x+1)\left(x^{2}+x+1\right)+1, \ldots\right\}$ $=\left\{t(x)\left(x^{2}+x+1\right)+1 \mid t(x) \in \mathbf{Z}_{2}[x]\right\}$
c) $[x]=\left\{x, x^{2}+1, x\left(x^{2}+x+1\right)+x,(x+1)\left(x^{2}+x+1\right)+x, \ldots\right\}$ $=\left\{t(x)\left(x^{2}+x+1\right)+x \mid t(x) \in \mathbf{Z}_{2}[x]\right\}$
d) $[x+1]=\left\{x+1, x^{2}, x\left(x^{2}+x+1\right)+(x+1),(x+1)\left(x^{2}+x+1\right)\right.$ $+(x+1), \ldots\}=\left\{t(x)\left(x^{2}+x+1\right)+(x+1) \mid t(x) \in \mathbf{Z}_{2}[x]\right\}$
7. Problem 16 (a) and (b) in Exercises 17.2(p. 814)
16. Let $s(x)=x^{4}+x^{3}+1 \in \mathbf{Z}_{2}[x]$.
a) Prove that $s(x)$ is irreducible.
b) What is the order of the field $\mathbf{Z}_{2}[x] /(s(x))$?
8. $\mathrm{GF}\left(2^{\wedge} 3\right)$ 유한체 상에서 (with $\mathrm{x}^{\wedge} 3+\mathrm{x}+1$ minimal polynomial), 두개의 polynomial $x^{\wedge} 2+x$ 와 $x+1$ 의 합과 곱을 계산하라.

- Thanks

