Data Mining: Data

Lecture Notes for Chapter 2



2.1 Types of Data - What is Data?

© Collectiog of data objects and Attributes
their attributes
AN
e I
: , id Refund ital Taxabl
e An attribute is a property or fid Refung Martta  faxa>e | . o

characteristic of an object -

1 |Yes Single |125K No
— Examples: eye color of a 5 N Married |100K | No
person, temperature, etc. >
_ _ 3 |No Single | 70K No
— Attribute is also known as 4 vy Married 120K |No
variable, field, characteristic, =
_ 5 |No Divorced | 95K Yes
or feature Objects< s In R N
_ _ 0 arre 0
e A collection of attributes e Divorced | 220k |N
. _ es Ivorce: 0
describe an object . Single |85k |Yes
— Object is also known as 9 |No Married | 75K No
record, point, case, sample, . Singl 90K Y
entity, or instance ~ > o =




Attribute Values

e Attribute values are numbers or symbols assigned
to an attribute

e Distinction between attributes and attribute values

— Same attribute can be mapped to different attribute
values

¢ Example: height can be measured in feet or meters

— Different attributes can be mapped to the same set of
values

¢ Example: Attribute values for ID and age are integers
+ But properties of attribute values can be different

— ID has no limit but age has a maximum and minimum value



Measurement of Length

e The way you measure an attribute is somewhat may not match
the attributes properties.
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- QLEZE2 02 22 24H, 3HH,481 S2 i+~ SH0] BT }UXISH 2aF 2 20|
49 NS4 UG US
T - | —————— —-> 1
3 «————— I ————————— - 2
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A mapping of lengths to numbers | A mapping of lengths to numbers
that captures only the order that captures both the order and
properties of length. additivity properties of length.

Figure 2.1. The measurement of the length of line segments on two different scales of measurement.
4



Types of Attributes

e There are different types of attributes
— Nominal(8 = &)
¢ Examples: ID numbers, eye color, zip codes
— Ordinal(M € &)

¢ Examples: rankings (e.g., taste of potato chips on a scale
from 1-10), grades, height in {tall, medium, short}

— Interval(/2t &

¢ Examples: calendar dates, temperatures in Celsius or
Fahrenheit.

— Ratio(Hl=&
¢ Examples: temperature in Kelvin, length, time, counts



Properties of Attribute Values

e The type of an attribute depends on which of the
following properties it possesses:

— Distinctness(72 &) = =
— Order(z=Al): < >

— Addition( &): + -

— Multiplication(= &): * /

— Nominal attribute(2 = &): distinctness

— Ordinal attribute(M € &): distinctness & order

— Interval attribute(=* 2t 2): distinctness, order & addition
— Ratio attribute(d| = &): all 4 properties



Attribute
Type

Nominal

Ordinal

Interval

Ratio

Description

The values of a nominal attribute are
just different names, i.e., nominal
attributes provide only enough
information to distinguish one object
from another. (=, #)

(BRY2 3| MECLHE O|EE > MR
TE HEIHI)

The values of an ordinal attribute
provide enough information to order
objects. (<, >)

(MEY2 ME &ME Fol=H EaTt
YR H3S)

For interval attributes, the differences
between values are meaningful, i.e., a
unit of measurement exists.

(+,-)

(TZHd 2 2t Atole| Xto| 7} e|n| 7}

ol
MO

For ratio variables, both differences

and ratios are meaningful. (*, /)
(HI2¥2 xto|et H| 0] 2F 2|0]7}

ol
T

Examples

zip codes, employee ID
numbers, eye color, sex:
{male, female}

hardness of minerals,
{good, better, best},
grades, street numbers

calendar dates,
temperature in Celsius
or Fahrenheit

temperature in Kelvin,
monetary quantities,
counts, age, mass,
length, electrical
current

Operations

mode, entropy,
contingency
correlation, y? test

Median(& Zt4)),
percentiles, rank
correlation, run tests,
sign tests

mean, standard
deviation, Pearson's
correlation, t and F
tests

geometric mean,
harmonic mean,
percent
variation(I{ M E
H X



Attribute
Level

Nominal

Ordinal

Interval

Ratio

>
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<Hd T
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g

Transformation

Any permutation of values
(=AM Heh =G)

An order preserving change of
values, i.e.,

new_value = f(old_value)
where f Is a monotonic function.
(a2 =AM HEY HE

new _value =a * old _value + b
where a and b are constants
(Mgt =a*Ul &gt +b)

new_value = a * old_value
(M2t =a* 0T 2}

Comments

If all employee ID numbers were
reassigned, would it make any
difference?

An attribute encompassing the
notion of good, better best can be
represented equally well by the
values {1, 2, 3} orby { 0.5, 1, 10}.

Thus, the Fahrenheit and Celsius
temperature scales differ in terms of
where their zero value is and the
size of a unit (degree).

Length can be measured in meters
or feet.



Discrete and Continuous Attributes

e Discrete Attribute
— Has only a finite or countably infinite set of values

— Examples: zip codes, counts, or the set of words in a collection of
documents

— Often represented as integer variables.
— Note: binary attributes are a special case of discrete attributes

e Continuous Attribute
— Has real numbers as attribute values
— Examples: temperature, height, or weight.

— Practically, real values can only be measured and represented
using a finite number of digits.

— Continuous attributes are typically represented as floating-point
variables.



Types of data sets

e Record

— Data Matrix
— Document Data
— Transaction Data

e Graph
—  World Wide Web
— Molecular Structures

e Ordered

— Spatial Data

— Temporal Data

— Sequential Data

— Genetic Sequence Data
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Important Characteristics of Structured Data

— Dimensionality
o HOIH &&2 HHMS0| Z= -’—'.“-"5'94 =/HF2 £
¢ Curse of Dimensionality(Xt& 2
¢ Dimensionality reduction(Xt& .:._/.\_)r—.;!B

— Sparsity

o X HFR =2 =540/ 00IH, L2(1% OILH) A

Al et
Ottl < - 001 Ot g8t xiclot®H (0l M, slad2
ZEO0l &)

¢ Only presence counts
— Resolution
o CIOIEE &0I8H #F2 HATZ 2= A2 US
o Patterns depend on the measurement scale(& &)

o O XIR EHS KMmEHFAZ E=HAR(EIEE)vs. mHRA2
g AL

— oT
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Record Data

e Data that consists of a collection of records, each
of which consists of a fixed set of attributes

Tid Refund Marital Taxable
Status Income Cheat

1 |Yes Single 125K No
2 |No Married | 100K No
3 |No Single 70K No
4 |Yes Married |120K No
5 |No Divorced | 95K Yes
6 |No Married |60K No
7 |Yes Divorced | 220K No
8 |No Single 85K Yes
9 |No Married | 75K No
10 |No Single  |90K Yes
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Data Matrix

e If data objects have the same fixed set of numeric
attributes, then the data objects can be thought of as
points in a multi-dimensional space, where each

dimension represents a distinct attribute

e Such data set can be represented by an m by n matrix,
where there are m rows, one for each object, and n
columns, one for each attribute

Projection
of x Load

Projection
of y load

Distance

Thickness

10.23

5.27

12.65

6.25
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Document Data

e Each document becomes a term' vector,
— each term is a component (attribute) of the vector,

— the value of each component is the number of times
the corresponding term occurs in the document.

= Q % Q _ = e
Elg|<zlg|8|2|-slg|3]|5
3 S = o) @ - g o
Document 1 3 0 5 0 2 6 0 2 0 2
Document 2 0 7 0 2 1 0 0 3 0 0
Document 3 0 1 0 0 1 2 2 0 3 0
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Transaction Data

e A special type of record data, where
— each record (transaction) involves a set of items.

— For example, consider a grocery store. The set of
products purchased by a customer during one
shopping trip constitute a transaction, while the
Individual products that were purchased are the items.

o e

Bread, Coke, Milk

Beer, Bread

Beer, Coke, Diaper, Milk
Beer, Bread, Diaper, Milk
Coke, Diaper, Milk

gl | W N -
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Graph Data (2= 7|9t Cj|O| E])

o 12 |O|H:

— OOl Zix|Zte| #AE LIEIL= Le2f=
— OO|E| ZHH X7t De=2 BESE 2 9l

—

e Examples: Generic graph and HTML Links

5 7&
0/5"

<a href="papers/papers.html#bbbb">

Data Mining </a>

<li>

<a href="papers/papers.html#aaaa">

Graph Partitioning </a>

<li>

<a href="papers/papers.html#aaaa">

Parallel Solution of Sparse Linear System of Equations </a>
<li>

<a href="papers/papers.html#ffff">

N-Body Computation and Dense Linear System Solvers
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Graph Data - Chemical Data

e Examples: Benzene Molecule: C Hg
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Ordered Data (A

E3 H|0|E)

-
o A€W O|O|H
Time Customer Items Purchased GGTTCCGCCTTCAGCCCCGECGECC
t1 C1 A B
B E-|| O| E‘l A M O| A| 7|-/_T'_7|- u o L CECAGGGCCCECCCCRCECCATC
> o1 cD GAGAAGGGCCCECCTGECGRECE
T'__A-I 9|‘ tl' E|_:| E._l tl' 7:” 7 |‘ 13 c2 A,D GGGGGAGGCGGEGECCGECCCGAGT
t4 c2 E
CCAACCGAGTCCGACCAGGTECC
t5 C1 A E
— Temporal data(Al 7t CCCTCTGCTCGGCCTAGACCTGA
E—Il O | E.I ) Customer Time and ltems Purchased CGOTCATTACGACGRCACGCAGACAR
C1 (t1: AB) (12:C,D) (t5:AE)
& G A D (L E) GCCAAGTAGAACACGCGAAGCGC
— Sequence data(AM &€ ca (2:A,C) TGGGCTGCCTGCTGCGACCAGGG

O] &)

— Time series data(A| Al € ey e
G| O] &) Ao ]

O T R I R
(BN R e
}l;lllg :||: |:|:

(a) Sequential transaction data.

{(b) Genomic sequence data.

A AP R
2°-:'I; I

— Spatial data(& 2t S RS
GO &) || ||| || |\ |||| ||| | ||;|l ] 1 mn

: n

{-El E:| |” El' f.' i|| ,‘;l Ell ‘i| | | lﬁl E

L.

Temperaturs (cek:ius)

O

15k

ol RN T SR SR T SR S —o I T T T T N T R T T
1952 1285 1964 1985 1855 1857 1982 1960 1820 1991 1292 199G 1994 -180 150 —120 80 60 -GULO o dSC' 60 G0 120 150 180 Temp
Bar ngitude

(¢) Temperature time series.

id) Spatial temperature data.

18 Figure 2.4. Different variations of ordered data.



2.2 Data Quality (H[O|E] S&

e What kinds of data quality problems?
e How can we detect problems with the data?
e What can we do about these problems?

e Examples of data quality problems:
— Noise and outliers
— missing values
— duplicate data

19



Noise

e Noise Is the random component of a
measurement error

— It may involve the distortion of a value or the addition
of spurious objects

— Examples: distortion of a person’s voice when talking
on a poor phone and “snow” on television screen

\ I I I \ \’ ‘ :
- "/ 0.4 \ 0.6 j o' \ 1 o 0.2 0.4 0.6 0.8 1

Time (seconds) Time {seconds)

Two Sine Waves 20 Two Sine Waves + random Noise



Outliers

e Outliers are data objects with characteristics that
are considerably different than most of the other
data objects in the data set
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Missing Values

e It is usual for an object to be missing one or more
attribute values

e Reasons for missing values

Information is not collected
(e.g., people decline to give their age and weight)

— Attributes may not be applicable to all cases

(e.g., annual income is not applicable to children)

e Handling missing values

Estimate Missing Values (&gt =4&)
Eliminate Data Objects (5= gt Ml H)

Ignore the Missing Value During Analysis (&4 & 0HM St
£ AD

Replace with all possible values (weighted by their probabilities)
(%—_EFDI—Q jl.%/\-l O| - DFEE EH i_”)

/| HA = O AN - BA

22



Duplicate Data (55 C|0|E{)

e Data set may Iinclude data objects that are
duplicates, or almost duplicates of one another

— Major issue when merging data from heterogeous
sources

e Examples:
— Same person with multiple email addresses

e Data cleaning (LI Ol & & AI)
— Process of dealing with duplicate data issues

23



2.3 Data Preprocessing(Hl0|E{ F X 2])

e Aggregation(& & /& HI/ZSH)

e Sampling(E= ==

e Dimensionality Reduction(xXt& =)

e Feature subset selection(S & =& g & &)

e Feature creation(S & A4

e Discretization and Binarization(0| &t 3t 2F 0] &l 3})
e Attribute Transformation(=4 2 &)

24



Aggregation

e Combining two or more attributes (or objects) into
a single attribute (or object)

O PUI’pOSE
— Data reduction
¢ Reduce the number of attributes or objects

— Change of scale
+ Cities aggregated into regions, states, countries, etc

— More “stable” data
¢ Aggregated data tends to have less variability

25



Aggregation

150
5 §
m =100
s :
2 =
3 g
5 =
B 5
c £ %
= z
4] o L
[ 2 4 [} B 10 12 14 16 18 [} 1 2 3 4 5 G
Standard Deviation Standard Deviation
(a) Histogram of standard deviation of (b) Histogram of standard deviation of
average monthly precipitation average vearly precipitation

Figure 2.8. Histograms of standard deviation for monthly and yearly precipitation in Australia for the
period 1982 to 1993,

(B 28 e #EHAY (B2 dE 32 25 HA
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Sampling

Sampling is the main technique employed for data selection.

— It is often used for both the preliminary investigation of the data
and the final data analysis.

Statisticians sample because obtaining the entire set of data
of interest Is too expensive or time consuming.

e Sampling Is used In data mining because processing the
entire set of data of iInterest IS too expensive or time
consuming.

27



Sampling ...

e The key principle for effective sampling is the
following:

— using a sample will work almost as well as using the
entire data sets, if the sample is representative

— Asample is representative If it has approximately the
same property (of interest) as the original set of data

28



Types of Sampling

e Simple Random Sampling(tt= L2 HE=FE)
— There is an equal probability of selecting any particular item

e Sampling without replacement(2 UM E=F==
— As each item is selected, it is removed from the population

e Sampling with replacement(CH Xl Z2F &)

— Objects are not removed from the population as they are
selected for the sample.

+ In sampling with replacement, the same object can be picked up
more than once

e Stratified sampling(£3t E2F %)

— Split the data into several partitions then draw random samples
from each partition (2& &= S22 LtE =, 2 SUHAMH B=g)

~ ZUYOIME SEN, ZA20EH SHZS IINETE 51 M2
Hgoz [ Hetst =5 Il



Sample Size
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Sample Size

o MAEGtHEE JJ| &EA

— What sample size is necessary to get at least one object from
each of 10 groups.

(b)e B2 377}

PP 100f| M 607HX| gy,
|1 (29| 107 2 E0M
ZFZF SfL}O| ZHR| 2
=1 i | =
® o 2 | Mg ssy
el
@
® O : | ME I AHY 4B
1070e] 2 E JE0IA
Y2 S 50|
- AME EE a2
oo coin
IX | |
® O 0516 20 30 40 30 8 70
Sample Size
(a) Ten groups of points. (b) Probability a sample contains points

from each of 10 groups.

Figure 2.10. Finding representative points from 10 groups.
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Curse of Dimensionality

o X0l SItotH HIOIH=
1 XF& 0| XtXIot=
SN EEH
sparseot | & > =40
HARHE

e Classificationjld ==t
Gl Ol & 28 XDt & XH ot K
ZO0t 22 4480 HARE

Clustering 0fl &
clustering2| =i &/ Q|
density2t =& 2t2
distance & £ J} &0} A
&I HARAE

o
w O

M
N O

DIST) /MIN_DIST))

—
- o

AX_DIST - MIN

©
o

log (M

10 15 20 25 30 35 40 45 50
Number of dimensions

* Randomly generate 500 points

» Compute difference between max and min
distance between any pair of points
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Dimensionality Reduction 7|

e Purpose:

— Avoid curse of dimensionality

— Reduce amount of time and memory required by data mining
algorithms

— Allow data to be more easily visualized
— May help to eliminate irrelevant features or reduce noise

e Technigues
— Principle Component Analysis (=4 & &4
— Singular Value Decomposition(5 0|2t =dl)

— Others: supervised and non-linear techniques

33



Dimensionality Reduction: PCA

o X|[}StO] HIOIES BI0IZ 2| 98

— The Goal is to find a projection that captures the largest amount
of variation in data
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Dimensionality Reduction: PCA

e Find the eigenvectors of the covariance matrix

— One of the most intuitive explanations of eigenvectors of a
covariance matrix is that they are the directions in which the
data varies the most.

— Example) Each data sample is a 2 dimensional point with
coordinates X, y. The eigenvectors of the covariance matrix of
these data samples are the vectors u and v,

— u : first eigenvector, v, the shorter arrow, is the second
eigenvector y A

The first eigenvector is the direction in
which the data varies the most, the
second eigenvector is the direction of
greatest variance among those that
are orthogonal (perpendicular) to the
first eigenvector.

The eigenvalues are the length of the
arrows.

Y
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Feature Subset Selection(&%d £2% g M)

e Another way to reduce dimensionality of data

e Redundant features(== S &

— duplicate much or all of the information contained in
one or more other attributes

— Example: purchase price of a product and the amount
of sales tax paid

e Irrelevant features(b| 2 & S &

— contain no information that i1s useful for the data
mining task at hand

— Example: students' ID is often irrelevant to the task of
predicting students' GPA
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Feature Subset Selection

d FEEE A8 D8

— Brute-force approach:

¢ Try all possible feature subsets as input to data mining
algorithm

— Embedded approaches:

¢ Feature selection occurs naturally as part of the data mining
algorithm

— Filter approaches:
¢ Features are selected before data mining algorithm is run

— Wrapper approaches:

¢ Use the data mining algorithm as a black box to find best
subset of attributes

37



Feature Creation

e Create new attributes that can capture the
Important information in a data set much more
efficiently than the original attributes

e Three general methodologies:
— Feature Extraction(S& =)
¢ domain-specific
— Mapping Data to New Space(M &
OH &)
— Feature Construction(S & /%)
¢ combining features

[H0

S22 = Ol0IH
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Mapping Data to a New Space

— Fourier transform : sin/cos &2 time domain & &>
frequency domain2 & HE

— Wavelet transform : sin/cos & =20t OtL| 2}, CH &8t wavelet
DEEE AIE0IH HErs

1 . . . 15 ‘ . . . 0
10 1 Of
05
5 O
0 ‘ 1 0
-5r 0
0.5}
N | WM/\JMMM
_1 1 1 1 15 1 1 1 1 OI 1 1 1 1 1 1 1
0 0.2 04 06 08 0 0.2 04 06 08 1 0 10 20 30 40 50 &0 70 80 90
) Time (seconds) Time (seconds)
Two Sine Waves Two Sine Waves + Noise Frequency
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=})

Discretization Using Class Labels (0|

e Discretization of Two Attributes
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Discretization Without Using Class Labels
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Attribute Transformation

e It alters the data by replacing a selected attribute by one or
more new attributes

e A function that maps the entire set of values of a given attribute
to a new set of replacement values such that each old value

can be identified with one of the new values
— Simple functions: xk, log(x), €%, |X|
— Standardization and Normalization, etc.
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2.4 Similarity and Dissimilarity(FAl= 2} H| FALE)

e Similarity
— Numerical measure of how alike two data objects are.
— Is higher when objects are more alike.
— Often falls in the range [0,1]

e Dissimilarity

— Numerical measure of how different are two data
objects

— Lower when objects are more alike
— Minimum dissimilarity is often O
— Upper limit varies

e Proximity refers to a similarity or dissimilarity
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Similarity/Dissimilarity for Simple Attributes

p and g are the attribute values for two data objects.

Attribute Dissimilarity Similarity
Type
0 ifp= 1 ifp=
Nominal d = 1 p=d s = 1 p=d
1 ifp#gq 0 ifp#gq
d — 1p—d
- lp—a|
Ordinal (values mapped to integers 0 ton—1, | s =1 — f’l_({
where n is the number of values)
Interval or Ratio | d = |p — ¢ s=—d, s = ﬁ or
s —1— d—min_d

max_d—min_d

Table 5.1. Similarity and dissimilarity for simple attributes




Euclidean Distance

e Euclidean Distance

_ N
dist=_| >(px — k)
k=1

Where n is the number of dimensions (attributes) and p, and q,
are, respectively, the ki attributes (components) or data
objects p and q.

e Standardization is necessary, if scales differ.
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Euclidean Distance

3 —
point X y
1
2¢r ol 0 2
p3 p4
1- ° ° p2 2 0
02 D3 3 1
O ‘ I I | p4 5 1
0 2 3 5 6
pl p2 p3 p4
pl 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
03 3.162| 1414 0 2
p4 5.099 3.162 2 0

Distance Matrix
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Minkowski Distance

e Minkowski Distance is a generalization of Euclidean
Distance

1

] n —

dist=(X| p =0 [')"
=1

Where r is a parameter, n is the number of dimensions
(attributes) and p, and g, are, respectively, the kth attributes
(components) or data objects p and g.
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Minkowski Distance: Examples

e r=1. City block :Manhattan norm, taxicab norm, L, norm

— A common example of this is the Hamming distance, which is just the
number of bits that are different between two binary vectors

d(p,q) = d(a,p) = /(@ —21)* + (@ — p2)* + -+ + (g — Pn)?

— I I Euclidean
e r = 2. Euclidean distance cucldes e
L2 norm Ipll = \/pi +py+- P = /PP,

e I = co. “supremum” (L _ norm, L norm) distance.
— This is the maximum difference between any component of the vectors

e Do not confuse r with n, I.e., all these distances are
defined for all numbers of dimensions.
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Minkowski Distance

L1 pl p2
pl 0 4
p2 4 0
p3 4 2
: p4 6 4
point X y
pl 0 2 L2 pl p2
) 2 0 pl 0 2.828
p3 3 1 p2 2.828 0
p4 5 1 p3 3.162 1.414
p4 5.099 3.162
Lo pl p2
pl 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

Distance Matrix
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Mahalanobis Distance

R S =T T
— T T T T T T T T 1

= This is a measure of the distance between a point P and a distribution D
» P/t EE DO HACEZEH ETHAIO H HY HO{H JY=XE L

o] K=k
YNy =]

D? =(x—m)TC (x — m)

D? = Mahalanobis distance
x = Vector of data
m = Vector of mean values of independent variables
C ! = Inverse Covariance matrix of independent variables
T = Indicates vector should be transposed

o0
f=2]
I
Mo
b
I
=]
o

For red points, the Euclidean distancg:ois 14.7, Mahalanobis distance is 6.



Mahalanobis Distance (example)

D? = (x—m)TC 1 (x —m)

D? — Mahalanobis distance

x = Vector of data
m = Vector of mean values of independent variables

C ! = Inverse Covariance matrix of independent variables
= Indicates vector should be transposed

If, in our single observation, X =410 and Y = 400 (other data is not shown in this example), we would
calculate the Mahalanobis distance for that single value as:

< Calculation of Mahalanobis distance>

Given that Mahalanobis Distance 0F = (x—m)TC'l(x—m)

< covariance matrix > le ) 410 - 500 —ap
“ariable X; mean =500, SD=79.32 400 - 500 =100
Yariable Y: mean =500, SD =79.25
and o= G291 55737 3TH4 52851 - _ 000025 -0.00015
. - _ 373432851 ALE0.FT06A -0.00015 0.00025
Yariance/Covariance Matrix
% Y
X 6291.55737 3754.32851 000025  -0.00015 Ty
Y 3754.32851 £280.77066 Therefore 0F = [-90 -100)= e
-0.00015 000025 =100

=1.825
Var(X)=std_dev(X)*2, Cov(X,Y)=E((X-u)(Y-V))
Cov(Y,X), Var(Y) 51



Mahalanobis Distance

3 Covariance Matrix:
. ] _[0s 02
2t o N g . B _02 03_
151 ' AR l
nl ' | A:(05,0.5)
B: (0, 1)
05+ _
C: (1.5,1.5)
of *¢ .
05F . " . i Mahal(A,B) =5
Mahal(A,C) =4

-1 | | | | |
05 0 05 1 15 2 25



Common Properties of a Distance

e Distances, such as the Euclidean distance,
have some well known properties.

1. d(p,q)=>0 forallpandq, andd(p, q) =0 only if
p = g. (Positive definiteness)

2. d(p,q)=d(q,p) forallpandqg.(Symmetry)

3. d(p,r) <d(p,q) +d(g,r) forall points p, q, andr.
(Triangle Inequality)

where d(p, q) is the distance (dissimilarity) between
points (data objects), p and q.

e A distance that satisfies these properties is a
metric

53



Common Properties of a Similarity

e Similarities, also have some well known
properties.

1. s(p, q) =1 (or maximum similarity) only if p = q.
2. s(p,q)=s(g,p) forall pandqg.(Symmetry)

where s(p, q) is the similarity between points (data
objects), p and q.
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Similarity Between Binary Vectors

e Common situation is that objects, p and g, have only
binary attributes

e Compute similarities using the following quantities
My, = the number of attributes where p was 0 and g was 1
M,, = the number of attributes where p was 1 and g was 0
Mo = the number of attributes where p was 0 and g was O
M;, = the number of attributes where p was 1 and q was 1

e Simple Matching Coefficients (&t& 0HE H =)
SMC = DhE &40 4/5489 &
= (Mg + Mgg) / (Mg + My + My; + Mg)

SMC= pk 8l gk 8le= HE7MA] 1HE S A=
Ol £ =01, Or2U0f| A £ OiSH= 1000702 2 HOIM, & 22 (p,q)2] HHIFL(FOH E8)2
SMC fAI=E 2CHH,
 p = (salt, pepper),
g= (salt, sugar)
M11 = 17li(salt), MO0=(10007} — 3), MO1=1(sugar), M10=1(pepper)
SMC=(1+997)/(1+1+1+997) =0.998 > °|O|glS
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Similarity Between Binary Vectors

e Jaccard Coefficients (XI2+E H =)
— SMC% 22l My,2 AFZ5HXl &S

— HIUE 0ld £d2= 2d= A2 RAIE Helll =

J = number of 11 matches / number of not-both-zero attributes values
- (Mll) / (M01 T MlO + IV|11)

— W& =0, 0210l Al B0 o= 1000002 20N, & 1282
At LI(F0H 23)2 Jaccard FAFEE =2CHH,
p = (salt, pepper),
g= (salt, sugar)
M11 = 17li(salt), MO1=1(sugar), M10=1(pepper)
Jaccard FAFE = (1 )/(1+1+1) =1/3> 5 EHIFL|Q| Jaccard FAI=E= QO|A S
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SMC versus Jaccard: Example

pP=1000000000
g=0000001001

Mo, = 2 (the number of attributes where p was 0 and g was 1)
M;,; =1 (the number of attributes where p was 1 and g was 0)
Mg, = 7 (the number of attributes where p was 0 and g was 0)
M;; =0 (the number of attributes where p was 1 and g was 1)

SMC = (M, + Myo)/(My, + Mg + My, + Mo,) = (0+7) / (2+1+0+7) = 0.7

J=My)/(My; +M;;+M))=0/(2+1+0)=0
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Cosine Similarity

e If d, and d, are two document vectors, then
cos(dy, d, ) = (dy e dy)/|ldy]l ]ld,]l ,

where e indicates vector dot product and || d || is the length of vector d.

e Example:

d,=3205000200
d,=1000000102

dyed,= 3*1+2*0+0*0 +5*0+ 0*0+ 0*0 + 0*0 + 2*1 + 0*0 + 0*2 =5

|Id, || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)°5 = (42) 05 = 6.481
||| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 05 = (6) 05 = 2,245

cos(d,, d,)=.3150

« Cosine SAFE7}0 O|2t=
5 OtF & A gl 2|0

Figure 2.16. Geometric illustration of the cosine measure.



Extended Jaccard Coefficient (Tanimoto)

e Variation of Jaccard for continuous or count
attributes

— Reduces to Jaccard for binary attributes

ey

Tip,q)=
P9 = P [aP —pea
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Correlation

e Correlation measures the linear relationship
between objects

e To compute correlation, we standardize data
objects, p and g, and then take their dot product

Pk = (P —mear(p))/std(p)

Ok = (0 —mear(q))/ std(q) C
correlatio(p,q)= p'eq = Correlation = 5P
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Visually Evaluating Correlation
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General Approach for Combining Similarities

e Sometimes attributes are of many different
types, but an overall similarity is needed.

1. For the k% attribute, compute a similarity, s, in the range [0, 1].
2. Define an indicator variable, é;, for the k;, attribute as follows:

O =

a value of 0, or if one of the objects has a missing values for the k%" attribute

0 if the k** attribute is a binary asymmetric attribute and both objects have
1 otherwise

3. Compute the overall similarity between the two objects using the following formula:

D k1 OkSk
Z:=l O

similarity(p, q) =
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Using Weights to Combine Similarities

e May not want to treat all attributes the same.

— Use weights w, which are between 0 and 1 and sum
to 1.

" ]
Zk:1 WO Sk

2221 Ok

similarity(p,q) =

1/r
distance(p,q) = (Zwk Pr — gr|” ) |
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Density

e Density-based clustering require a notion of
density

e Examples:

— Euclidean density
¢ Euclidean density = number of points per unit volume

— Probability density

— Graph-based density
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Euclidean Density — Cell-based

e Simplest approach is to divide region into a
number of rectangular cells of equal volume and
define density as # of points the cell contains

0
0
S R R B 0 (
T San I B e S 14 14 13 13 0 18 2
2 ___________ " _____ 11 18 10 21 0 24 31
BRI A0 F 320 14 4 0 0 0
A B A B :

o o0 O 0 0 0 0

i i i i i i i
1 2 3 4 5 6 7

Figure 7.13. Cell-based density. Table 7.6. Point counts for each grid cell.
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Euclidean Density — Center-based

e Euclidean density is the number of points within a
specified radius of the point

e e
)
o o
. d

o vt . .

Figure 7.14. lllustration of center-based density.
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