Data Mining Association Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 6

Contents

Rule Generation

Rule Generation from frequent itemset

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

 If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

Rule Generation from frequent itemset

- How to efficiently generate rules from frequent itemsets?
 - 신뢰도(confidence)는 anti-monotone 성질을 가지지 않는다. → Apriori 특성 사용이 어려움

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- 그러나, 동일한 항목집합에서 생성된 규칙에 대해서는 anti-monotone 성질이 성립
- (That is, confidence is anti-monotone w.r.t number of items on the RHS of the rule, or monotone w.r.t. the LHS of the rule)
- e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

$$c(ABC \to D) = \frac{\sigma(\{A, B, C, D\})}{\sigma(\{A, B, C\})}$$
$$c(AB \to CD) = \frac{\sigma(\{A, B, C, D\})}{\sigma(\{A, B\})}$$
$$c(A \to BCD) = \frac{\sigma(\{A, B, C, D\})}{\sigma(\{A\})}$$

Rule Generation for Apriori Algorithm

Rule Generation for Apriori Algorithm

• Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
• Candidate rule is generated by merging two rules that share the same prefix in the same prefix the rule consequent • A'를 공유하고 있음

CD=>AB

D=>ABC

BD=>AC

join(CD→AB,BD→AC)
 would produce the candidate
 rule D → ABC

 Prune rule D → ABC if the exists a subset (AD→BC) that does not have high confidence

Essentially, we are doing Apriori on the RHS

Contents

Maximal Frequent Itemset

- An itemset is maximal frequent(최대 빈발 항목집합) if none of its immediate supersets are frequent
- That is, this is a frequent itemset which is not contained in another frequent itemset.
- 찾는 방법
 - 먼저 Infrequent와 frequent itemset 사이의 border에 있는 frequent itemset 찾음
 - 모든 immediate supersets을 찾음
 - 만약 immediate superset 모두가 frequent 하지 않으면, 해당 itemset은 maximal frequent함
 - ✓ 예: Items: a, b, c, d, e
 - √ Frequent Itemset: {a, b, c}
 - \checkmark {a, b, c, d}, {a, b, c, e}, {a, b, c, d, e} are not Frequent Itemset.
 - ✓ Maximal Frequent Itemsets: {a, b, c}
- Maximal frequent itemset은 아주 긴 빈발 항목집합을 만들 때 유용함
 - 일반적으로 짧은 항목집합은 규칙으로서 큰 의미가 없는 경우가 많음
 - 반면에, 긴 항목집합은 대개가 surprise한 연관규칙을 생성할 수 있음

Maximal Frequent Itemset

Maximal frequent itemset 찾는 예 1:

- 먼저 Infrequent와 frequent itemset 사이의 border에 d, bc, ad, abc frequent itemset 이 있음을 확인함
- 이들 itemset의 immediate superset을 찾음
 - d의 superset으로 ad, bd, cd 가 있는데, ad는 frequent임. → d는 maximal 이 되지 못함
 - Bc는 abc와 bcd를 superset 으로 갖는데, abc가 frequent함 → bc는 maximal되지 못함
 - ad와 abc의 superset은
 모두 infrequent 함 →
 ad와 abc는 모두
 maximal임

Maximal Frequent Itemset

● Maximal frequent itemset 찾는 예 2:

Closed Itemset

- An itemset is closed if none of its immediate supersets has the same support as the original itemset
- That is, this is a set of items which is as large as it can possibly be without losing any transactions
- Closed itemset이 frequent 하면 closed frequent itemset임
- 예 closed frequent itemset 찾는 방법

• 먼저 모든 frequent itemset을 찾음

 이후, 만약 해당 itemset의 superset이 original frequent itemset과 동일한 support를 가지면 closed itemset 아님.

• 아니면 해당 original itemset은 closed

itemset임

Closed Itemset

● 예 closed frequent itemset 찾는 방법

- superset과 동일한 support값을 가지지 않아야 함)
- 노란색 색칠된 circle은 maximal frequent itemset 임

Maximal vs Closed Itemsets

Maximal vs Closed Frequent Itemsets

Maximal vs Closed Itemsets

- it is important to point out the relationship between frequent itemsets, closed frequent itemsets and maximal frequent itemsets.
- Closed and maximal frequent itemsets are subsets of frequent itemsets but maximal frequent itemsets are a more compact representation because it is a subset of closed frequent itemsets.
- The diagram to the right shows the relationship between these three types of itemsets.

Contents

연관 규칙 평가(Pattern Evaluation)

- 연관 규칙 생성 알고리즘은 너무 많은 연관 규칙을 생성하는 경향이 있음
 - 생성된 많은 규칙은 유용하지 않음(uninteresting or redundant)
 - 예를 들어, {A, B, C} → {D}와 {A, B} → {D}가 동일한 지지도/신뢰도를 갖는다면, 이들 두 규칙은 redundant 함
- Interestingness measures(유용성 척도)는 유도된 규칙을 제거하거나 순위를 매기는데(prune or rank) 사용됨
- 지지도와 신뢰도(support & confidence)도 유용성 척도에 속함

유용성 척도 활용 시점

Computing Interestingness Measure

 주어진 규칙 X → Y에 대해, 다음 분할표(contingency table)를 사용하여 다양한 유용성 척도를 계산할 수 있다

Contingency table for $X \to Y$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	T

X항목이 transaction에 없는 경우 $\rightarrow \overline{X}$

f_{ij}는 support 즉, 빈도수 count 값을 의미함

f₁₊는 결국 X에 대한 지지도 count를 의미함

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

f₀₁: support of X and Y

f₀₀: support of X and Y

Used to define various measures

support, confidence, lift, Gini, J-measure, etc.

신뢰도의 단점(Drawback of Confidence)

	Coffee	Coffee	
Tea	15	5	20
Tea	65	15	80
	80	20	100

$$s(X \to Y) = \frac{\sigma(X \cup Y)}{N}$$

$$c(X \to Y) = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

Association Rule: Tea → Coffee

- Support(Tea \rightarrow Coffee) = 15/100 = 15%
- Confidence(Tea \rightarrow Coffee) = s(Tea U Coffee)/s(Tea) = 15/20= 75%
- 위 신뢰도를 보고 차를 마시는 사람은 coffee를 마시는 경향이 있다고 볼지도 모름
- 하지만, 위 데이터를 보면 차를 마시든 마시지 않든 간에, coffee 를 마시는 사람의 비율은 원래 80%였음
- 즉, 규칙 Tea → Coffee를 통해, 어떤 사람이 차를 마신다는 정보를 통해 커피를 마시는 사람의 정보를 아는 것은 (75%라는 큰 신뢰도 값을 가짐에도) 큰 의미가 없음.

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - $P(S \land B) = P(S) \times P(B) => Statistical independence$
 - P(S∧B) > P(S) × P(B) => Positively correlated
 - P(S∧B) < P(S) × P(B) => Negatively correlated

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

Note:
$$\frac{P(Y \mid X)}{P(Y)} = \frac{\frac{P(X,Y)}{P(X)}}{P(Y)} = \frac{P(X,Y)}{P(X)P(Y)}$$

Lift와 Interest는 equivalent함

연관 규칙 평가(Pattern Evaluation)

- Lift of an association rule: X → Y, lift = P(Y/X)/P(Y))
 - If Lift > 1, then X and Y appear more often together than expected
 - this means that the occurrence of X has a positive effect on the occurrence of Y or that X is positively correlated with Y.
 - If Lift < 1 then, X and Y appear less often together than expected
 - this means that the occurrence of X has a negative effect on the occurrence of Y or that X is negatively correlated with Y
 - If Lift = 1, then X and Y are independent.
 - this means that the occurrence of X has almost no effect on the occurrence of Y

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75but P(Coffee) = 0.9

⇒ Lift = P(Coffee/Tea)/P(Coffee) = 0.75/0.9= **0.8333** (< 1, therefore, the Lift is suggesting a slight negative correlation b/w tea drinkers and coffee drinkers)

	#	Measure	Formula
Thoro are lete of	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)^2(A)P(B)^2(A)P(B)^2}}$
There are lots of	١		$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
in the literature	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB}) + P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha - 1}{\alpha + 1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha}-1}{\sqrt{\alpha}+1}$
Some measures are good for certain	6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$ $\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}$
applications, but not	7	Mutual Information (M)	$\overline{\min(-\sum_i P(A_i) \log P(A_i), -\sum_j P(B_j) \log P(B_j))}$
for others	8	J-Measure (J)	$\max\left(P(A,B)\log(rac{P(B A)}{P(B)}) + P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}), ight.$
			$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(\overline{A})})\Big)$
	9	Gini index (G)	$= \max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
What criteria should			$-P(B)^2-P(\overline{B})^2$,
we use to determine			$P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B})[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2]$
whether a measure			$-P(A)^2-P(\overline{A})^2$
is good or bad?	10	Supposet (a)	P(A,B)
is good or bad:		Support (s)	
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
What about Apriori-	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
style support based	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
pruning? How does	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
it affect these	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
measures?	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$5\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$