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Rule Generation from frequent itemset

e Given a frequent itemset L, find all non-empty
subsets f — L such that f —» L — f satisfies the
minimum confidence requirement

— If {A,B,C,D} is a frequent itemset, candidate rules:

ABC —-D, ABD —C, ACD —B, BCD —A,
A —-BCD, B ->ACD, C —ABD, D ->ABC
AB —CD, AC — BD, AD — BC, BC —»AD,
BD —»AC, CD —AB,

e If [L| = k, then there are 2% — 2 candidate
association rules (ignoring L > & and & — L)



Rule Generation from frequent itemset

® How to efficiently generate rules from frequent itemsets?

— M2 E(confidence)= anti-monotone ‘3 &2 & 7HX|X| &+=Ct. > Apriori

54 ArE0| o2 =
c(ABC —D) can be larger or smaller than c(AB —D)

— 131 L}, % 2o 2t =5 XSO A M=l &0 CHs Al= anti-monotone

= (That IS, confldence is anti-monotone w.r.t number of items on the RHS
of the rule, or monotone w.r.t. the LHS of the rule)

- e.g., L={A,B,C,D}.
c(ABC — D) > ¢c(AB —» CD) > ¢c(A — BCD)

_o({A,B,C,D})
c(ABC —» D) = S(AB.C))
AB,C,D

c(4B > (D) = 0({0({A BY) :
) ’C,D

¢(4 > BCD) = 0({/;(1?/1}) :
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Rule Generation for Apriori Algorithm

Lattice of rules

Low -t~
Confide&*
Rule /

N
Pruned ~ _ _ -
Rules e — -_——
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Rule Generation for Apriori Algorithm

@ Candidate rule is generated by merging two rules that
share the same prefix Rule consequence®

2 1035 o
‘AE SH/01 AS

In the rule consequent

e join(CD->AB,BD>AC)
would produce the candidate
rule D - ABC

® Prune rule D >ABC if the exists a
subset (AD->BC) that does not have
high confidence

e Essentially, we are doing Apriori on the RHS
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Maximal Frequent Itemset

® An itemset is maximal frequent(Z[ O 212 =& &) if none of its
immediate supersets are frequent

e Thatis, this is a frequent itemset which is not contained in another
frequent itemset.

o 3w

- AN Infrequent2t frequent itemset A0l 2| borderlil U= frequent itemset & 2
- 2 = immediate supersets= &3

- BFeF immediate superset 2 5 Jt frequent ot Al 22 ™, oY itemset= maximal
frequent&
v 0Ol: Items: a, b, c,d, e
v" Frequent Itemset: {a, b, c}
v {a,b,c,d},{a, b, c, e}, {a, b, c, d, e} are not Frequent Itemset.
v Maximal Frequent Itemsets: {a, b, c}

e Maximal frequent itemset2 Ot 21 Bl SI=& =S 0t I RE&
. UBINOR W2 SRS FEORAN 2 2|07} gls IR LS
- BHHQ, 2 &S E S 2 UOHJF surprisest A2t 222 MAS £ U3

R U X5 loT A4
Information Securi ty & Intelligent loT 8



Maximal Frequent Itemset

e Maximal frequent itemset &&= 0 1:

- H A Infrequentt frequent itemset AlOl 2| border0ll d, be, ad, abc frequent
itemset 0] YSS &0l&

- 0| = itemset2| immediate superset=

>

d2| superset2 2 ad, bd,
cd Jb J=0l, ad=
frequentd. > d& maximal
o| £|x] 2%

Bc= abclt bedE
superset 2 & 2t=0l,
abcJt frequents - bce=
maximal &l X| &£ &

ad 2t abcl| superset2
2 % infrequent & >
ad?t abc= B 5
maximal &!
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Maximal Frequent Itemset

e Maximal frequent itemset &&= 0| 2:

Maximal
Itemsets

Infrequent
Itemsets <+—




Closed Itemset

® An itemset is closed if none of its immediate supersets has the same
support as the original itemset

@ That s, this is a set of items which is as large as it can possibly be
without losing any transactions

e Closed itemsetO| frequent 6t closed frequent itemset&!
e 0l closed frequent itemset &= &'

- HH 2 E frequent itemset=S &3
- 0lF, 0+eF G Y itemset2| supersetO|

original frequent itemset 1t =& St f@ @ 3© S

supportE JtAIH closed itemset Ot .
- OtLI™H oY original itemset2 closed

itemset C"b) b ZC"’“’D 1 - @

null
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Closed Itemset

e 0l closed frequent itemset & = 2

null closed frequent itemset

{ frequent itemset
o O

- c= closed frequent

1 E 1 2 2 itemset!. C2| superset?!
@ a @ be @ ac, bc, cd= 32CH &2
support gt= JtKIE 2

- 2Z WHOA S 92
frequent itemset 0| =HGHMH,

1 ‘ 2 1 —
abc acd bed OIS0l A 4717t closed

frequent itemset &

- ad<= frequent itemset O] X| GF
abcd superset?! abd 2t =2 St support
at=2 X2 2 closed Ot

- 1t e+ circle2 frequent itemset &

- LtetM SIH 2 circle 2 closed frequent itemset & (closed=
supersetdt = 2! &t supportgt= JHXI Al £ 0L0F &)

L etA M EE circle2 maximal frequent itemset &
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Maximal vs Closed Itemsets

Transaction Ids

ltems

Not supported by ’,,—*”/
any transactions -

TID

13
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# Closed =9
# Maximal = 4

Closed but
not maximal
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Maximal vs Closed Frequent Itemsets

Minimum support = 2




Maximal vs Closed Itemsets

« itis important to point out the relationship between frequent
itemsets, closed frequent itemsets and maximal frequent
itemsets.

Frequent
Iltemsets

Closed
Frequent
Itemsets

* Closed and maximal frequent itemsets are subsets of
frequent itemsets but maximal frequent itemsets are a more
compact representation because it is a subset of closed
frequent itemsets.

* The diagram to the right shows the relationship between
these three types of itemsets.
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@ 7l(Pattern Evaluation)

o &t & MA Y )2[&S2 R E2 & A3 d8ot= ZE0]
AS
- M4E E2 422 RE0HAl &2 S(uninteresting or redundant)
~ 0IZ S0i,{A B, C} - {D}2 {A, B} > {D}J} SUS XX /A2
=LA, 0| = & 72 2 redundant &

FIF

TTO O —/ L

=% 2 0lJ|=0l(prune or rank) At= &
o XX &2 &gl = (support & confidence)=

® Interestingness measures(F&24& &)= &= 3= MAHGHALE
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Interestingness
Measures

Patterns

Knowledge AR
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Postprocessing
Preprocesse
Data
E Mining
Selected
Data
Data g == Preprocessing

Selection
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Computing Interestingness Measure

o O & X — YO CH3H, Cf= =& H(contingency
table)S AFESHY] CHYot &4 HE&E Athe = ULk
f,= support 5, 2l =
Contingency table for X —> Y count 2+ |0t

f.= A= XO0f Eﬂﬁ*xlxli
X f11 f10 f1+ > countE 2|0O|gt

f,: support of X and Y
‘L fo 71 | o support of X and Y
fo;: support of X and Y
0| transactionoi f,o: support of X and Y

Used to define various measures

+ support, confidence, lift, Gini,
() zevmyonen J-measure, etc.
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M2| £ 9| THH (Drawback of Confidence)

Coffee | Coffee
Tea 15 ) 20
Tea | 65 | 15 | 80
80 20 100

Association Rule: Tea — Coffee
Support(Tea > Coffee) = 15/100 = 15%
Confidence(Tea - Coffee) = s(Tea U Coffee)/s(Tea) = 15/20= 75%

s( X ->Y)=

c(X—>Y)=

o(X UY)

o(X UY)
o (X)

- RAZEE B0 XE OtA= A2 coffeeE OtAl= BE0| /U] EXE B8

- OtAIGH 2 OI0IHE XIS O0FAIE OFAIKI 2 E 2t0l, coffee E DIAl= AT HIE2
80% % =

- &, 7= Tea > CoffeeE Soll, HH AI20| XIS OtAICH=E AEE Soll HIIE OtAl= Al
dABE Ol A2 (75%c2te 2 AT g2 AU T) 2 2010t 8L 3.
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Statistical Independence

® Population of 1000 students

— 600 students know how to swim (S)
— 700 students know how to bike (B)
— 420 students know how to swim and bike (S,B)

— P(SAB) = 420/1000 = 0.42
~ P(S)x P(B)=0.6 x 0.7 = 0.42

— P(SAB) = P(S) x P(B) => Statistical independence
— P(SAB) > P(S) x P(B) => Positively correlated
— P(SAB) < P(S) x P(B) => Negatively correlated

o HEEE U XI5Y loT A7
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Statistical-based Measures

® Measures that take into account statistical

dependence

P(Y | X)
P(Y)
P(X.Y)

Lift =

Interest =

P(X)P(Y)

22

P(X,Y)

Nopo. POIX) _ PO P(X,Y)

P(Y)

P(Y)  P(X)P(Y)

Lift2} Interest=

equivalent®




A2 % ™I(Pattern Evaluation)

e® Lift of an association rule: X =2 Y, lift = P(Y/X)/P(Y))

— If Lift > 1, then X and Y appear more often together than expected

+ this means that the occurrence of X has a positive effect on the occurrence of Y or
that X is positively correlated with Y.

— If Lift < 1 then, X and Y appear less often together than expected

+ this means that the occurrence of X has a negative effect on the occurrence of Y
or that X is negatively correlated with Y

— If Lift =1, then X and Y are independent.

¢ this means that the occurrence of X has almost no effect on the occurrence of Y
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Example: Lift/Interest

Coffee | Coffee
Tea 15 ) 20
Tea | 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9

= Lift = P(Coffee/Tea)/P(Coffee) = 0.75/0.9= 0.8333 (< 1,
therefore, the Lift is suggesting a slight negative correlation
b/w tea drinkers and coffee drinkers)
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There are lots of
measures proposed
in the literature

Some measures are
good for certain
applications, but not
for others

What criteria should
we use to determine
whether a measure
is good or bad?

What about Apriori-
style support based
pruning? How does
it affect these
measures?

# | Measure Formula
coeffici P(A,B)—P(A)P(B)
| Fooee e PUAgy B s g A3 Ba)—maxs PUA) P(Bx)
. : INAXE iy Br max, 1 Br)—max; ;) —mazy %
2 | Goodman-Kruskal’s {A) ( - _) Tommax; P(A;)mac PG
. P(A,B)P(A
3 Odds ratio (Q) m
) P(4,B)P(AB)—P(A,B)P(A,B) _ a—1
4 | Yule’s @ P(A,B)P(AB){P(A,B)P(A,B) _ atl
a +/P(A,B)P(AB)—+/P(A,BYP(A,B) _ Ja—1
5 | Yues Y \/P(A,B)P(AB)++/P(A,B)P(4,B) _ Vetl
P(A, B)+P(A,B)—P(4) P(B)—P(A) P(B)
6 | Kappa («) —P(APB)-PAPE)
. 2 L3 P(AiBj)log pra; }';’(B 3
7 | Mutual Information (M) | o 5,710 LA~ 5, P(B; ) 1og P(B;))
P(B|A = P(B|A
8 | J-Measure {J) max ( P(4, B) log( 554 ) + P(AB) log(5Z2),
P(A, B) log(2{84)) + P(AB) log( 241
9 | Ginl index {G) max (P(A) [P(B|4)? + P(B|A)’] + P(A)[P(B|A)" + P(B|4)"]
—P(B)’ — P(B)’,
P(B)[P(A|B)* + P(A|B)"] + P(B)[P(A|B)” + P(A|B)’]
—P(A)? - P(A)")
10 | Support (s) P(A,B)
11 | Confidence {c) max{P{B|A), P(A|B))
NP(4A,B)+1l NP(AB)+1
12 | Laplace (L) max ( i T MDY )
- P(A)P(B) P(B)P(A)
13 | Conviction (V) max | = T o aa)
P(4,B)
14 | Interest {I) BlAP(B
15 | cosine (IS) i
2/ P(A)P(B)
16 | Piatetsky-Shapiro’s (PS) | P{A,B)— P(A)P(B)
17 | Certainty factor (F) max (PELA-EE) PAIBI-E(A))
18 | Added Value {AV) max{P{B|A) — P(B), P(A|B — P{A))
. P(A,B)+P(AB) 1—P(A)P(B)—P(A)P(B)
19 | Collective strength {\S) P(A)P%BL+E(Z)P(E) T P(A B)_P(AD)
20 | Jaceard (() P(A) 1 P(B)_P(A,B)
21 | Klosgen {K) 5v/P{4, B) max{(P{B|A) — P(B), P(A|B) — P(4))




