Data Mining

 Classification: Alternative Techniques

 Classification: Alternative Techniques}

Lecture Notes for Chapter 5 (PART 2)

정보보호 및 지능형 IOT 연구실
Information Security \& Intelligent IoT

Agenda

Rule Based Classifier

Bayesian Classifier

Artificial Neural Network

Support Vector Machine

Ensemble, Bagging, Boosting

Contents

Artificial Neural Network

Artificial Neural Networks (ANN)

X_{1}	X_{2}	X_{3}	Y
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Output Y is 1 if at least two of the three inputs are equal to 1 .

Artificial Neural Networks (ANN)

Input

X_{1}	X_{2}	X_{3}	Y
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

$Y=I\left(0.3 X_{1}+0.3 X_{2}+0.3 X_{3}-0.4>0\right)$
where $I(z)= \begin{cases}1 & \text { if } z \text { is true } \\ 0 & \text { otherwise }\end{cases}$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$
\begin{aligned}
& Y=I\left(\sum_{i} w_{i} X_{i}-t\right) \quad \text { or } \\
& Y=\operatorname{sign}\left(\sum_{i} w_{i} X_{i}-t\right)
\end{aligned}
$$

General Structure of ANN

Algorithm for learning ANN

- Initialize the weights $\left(w_{0}, w_{1}, \ldots, w_{k}\right)$
- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples
- Objective function: $E=\sum_{i}\left[Y_{i}-f\left(w_{i}, X_{i}\right)\right]^{2}$
- Find the weights w_{i} 's that minimize the above objective function
- e.g., backpropagation algorithm

Contents

Support Vector Machine

Support Vector Machines

- Find a linear hyperplane (decision boundary) that will separate the data

Support Vector Machines

- One Possible Solution

Support Vector Machines

- Another possible solution

Support Vector Machines

- Other possible solutions

Support Vector Machines

- Which one is better? B1 or B2?
- How do you define better?

Support Vector Machines

- Find hyperplane maximizes the margin => B1 is better than B 2

Support Vector Machines

Support Vector Machines

$$
\max \frac{2}{\|w\|}
$$

s.t.
$(w \cdot x+b) \geq 1, \forall x$ of class 1
$(w \cdot x+b) \leq-1, \forall x$ of class 2

$$
\frac{w}{\|w\|} \cdot\left(x_{2}-x_{1}\right)=\text { width }=\frac{2}{\|w\|}
$$

$$
w \cdot x_{2}+b=1
$$

$$
w \cdot x_{1}+b=-1
$$

$$
w \cdot x_{2}+b-w \cdot x_{1}-b=1-(-1)
$$

$$
w \cdot x_{2}-w \cdot x_{1}=2
$$

$$
\frac{w}{\|w\|}\left(x_{2}-x_{1}\right)=\frac{2}{\|w\|}
$$

Support Vector Machines

- We want to maximize: $\quad \operatorname{Margin}=\frac{2}{\|\vec{w}\|^{2}}$
- Which is equivalent to minimizing: $L(w)=\frac{\|\vec{w}\|^{2}}{2}$
- But subjected to the following constraints:

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1 \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1
\end{array}\right.
$$

- This is a constrained optimization problem
- Numerical approaches to solve it (e.g., quadratic programming)

Support Vector Machines

-What if the problem is not linearly separable?

Support Vector Machines

- What if the problem is not linearly separable?
- Introduce slack variables
- Need to minimize:

$$
L(w)=\frac{\|\vec{w}\|^{2}}{2}+C\left(\sum_{i=1}^{N} \xi_{i}^{k}\right)
$$

- Subject to:

$$
f\left(\vec{x}_{i}\right)=\left\{\begin{array}{cc}
1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \geq 1-\xi_{\mathrm{i}} \\
-1 & \text { if } \overrightarrow{\mathrm{w}} \bullet \overrightarrow{\mathrm{x}}_{\mathrm{i}}+\mathrm{b} \leq-1+\xi_{\mathrm{i}}
\end{array}\right.
$$

Nonlinear Support Vector Machines

-What if decision boundary is not linear?

Nonlinear Support Vector Machines

- Transform data into higher dimensional space

Contents

기타

1. Ensemble Methods

2. Bagging

3. Boosting

Ensemble Methods

- Construct a set of classifiers from the training data
- Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon=0.35$
- Assume classifiers are independent
- Probability that the ensemble classifier makes a wrong prediction:

$$
\sum_{i=13}^{25}\binom{25}{i} \varepsilon^{i}(1-\varepsilon)^{25-i}=0.06
$$

25개의 기본 분류기 중에서, 반 이상의 기본 분류기가 잘못 예측할 경우가 ensemble 분류기의 오류율이 됨

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
- Bagging
- Boosting

Bagging

- Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- The probability of NOT being selected in any n trials is $(1-1 / n)^{n}$
\rightarrow The probability of being selected at least once in n trials is $1-(1-1 / n)^{n}$
- The probability of being selected in some particular trial is $1 / \mathrm{n}$.
- The probability of not being selected in some particular trial is $1-1 / n$.

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
- Initially, all N records are assigned equal weights
- Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	(4)

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Example: AdaBoost

- Base classifiers: $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{T}}$
- Error rate:

$$
\varepsilon_{i}=\frac{1}{N} \sum_{j=1}^{N} w_{j} \delta\left(C_{i}\left(x_{j}\right) \neq y_{j}\right)
$$

- Importance of a classifier:

$$
\alpha_{i}=\frac{1}{2} \ln \left(\frac{1-\varepsilon_{i}}{\varepsilon_{i}}\right)
$$

Example: AdaBoost

- Weight update:

$$
w_{i}^{(j+1)}=\frac{w_{i}^{(j)}}{Z_{j}} \begin{cases}\exp ^{-\alpha_{j}} & \text { if } C_{j}\left(x_{i}\right)=y_{i} \\ \exp ^{\alpha_{j}} & \text { if } C_{j}\left(x_{i}\right) \neq y_{i}\end{cases}
$$

where Z_{j} is thenormalizatonfactor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to $1 / n$ and the resampling procedure is repeated
- Classification:

$$
C^{*}(x)=\underset{y}{\operatorname{argmax}} \sum_{j=1}^{T} \alpha_{j} \delta\left(C_{j}(x)=y\right)
$$

Illustrating AdaBoost

Illustrating AdaBoost

Overall

