Data Mining Classification: Alternative Techniques

Lecture Notes for Chapter 5 (PART 2)

Agenda

Contents

Artificial Neural Networks (ANN)

X ₁	X_2	X_3	Υ		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		
0	0	1	0		
0	1	0	0		
0	1	1	1		
0	0	0	0		

Output Y is 1 if at least two of the three inputs are equal to 1.

Artificial Neural Networks (ANN)

X ₁	X ₂	X ₃	Υ		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		
0	0	1	0		
0	1	0	0		
0	1	1	1		
0	0	0	0		

$$Y = I(0.3X_1 + 0.3X_2 + 0.3X_3 - 0.4 > 0)$$
where
$$I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$$

Artificial Neural Networks (ANN)

- Model is an assembly of inter-connected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links
- Compare output node against some threshold t

Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t)$$
 or $Y = sign(\sum_{i} w_{i}X_{i} - t)$

General Structure of ANN

Algorithm for learning ANN

- Initialize the weights (w₀, w₁, ..., w_k)
- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples
 - Objective function: $E = \sum_{i} [Y_i f(w_i, X_i)]^2$
 - Find the weights w_i's that minimize the above objective function
 - e.g., backpropagation algorithm

Contents

Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution

Another possible solution

Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

Find hyperplane maximizes the margin => B1 is better than B2

$$f(\vec{x}) = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}} + \mathbf{b} \ge 1 \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}} + \mathbf{b} \le -1 \end{cases}$$

$$\max \frac{2}{\|w\|}$$

s.t. $(w \cdot x + b) \ge 1, \forall x \text{ of class } 1$ $(w \cdot x + b) \le -1, \forall x \text{ of class } 2$

- We want to maximize: Margin= $\frac{2}{\|\vec{w}\|^2}$
 - Which is equivalent to minimizing: $L(w) = \frac{||w||^2}{2}$
 - But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

• What if the problem is not linearly separable?

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize: $L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$
 - Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + \mathbf{b} \ge 1 - \xi_i \\ -1 & \text{if } \vec{\mathbf{w}} \bullet \vec{\mathbf{x}}_i + \mathbf{b} \le -1 + \xi_i \end{cases}$$

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Nonlinear Support Vector Machines

Transform data into higher dimensional space

Contents

1. Ensemble Methods

2. Bagging

3. Boosting

Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\varepsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {25 \choose i} \varepsilon^i (1-\varepsilon)^{25-i} = 0.06$$

25개의 기본 분류기 중에서, 반 이상의 기본 분류기가 잘못 예측할 경우가 ensemble 분류기의 오류율이 됨

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging

Boosting

Bagging

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Build classifier on each bootstrap sample
- The probability of NOT being selected in any n trials is (1 – 1/n)ⁿ
 - \rightarrow The probability of being selected at least once in n trials is 1- $(1 1/n)^n$
 - The probability of being selected in some particular trial is 1/n.
 - The probability of **not** being selected in some particular trial is 1-1/n.

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Example: AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_{i} = \frac{1}{N} \sum_{j=1}^{N} w_{j} \delta(C_{i}(x_{j}) \neq y_{j})$$

Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Example: AdaBoost

• Weight update:

$$w_i^{(j+1)} = \frac{w_i^{(j)}}{Z_j} \begin{cases} \exp^{-\alpha_j} & \text{if } C_j(x_i) = y_i \\ \exp^{\alpha_j} & \text{if } C_j(x_i) \neq y_i \end{cases}$$

where Z_i is the normalization factor

- If any intermediate rounds produce error rate higher than 50%, the weights are reverted back to 1/n and the resampling procedure is repeated
- Classification:

$$C^*(x) = \underset{y}{\operatorname{argmax}} \sum_{j=1}^{T} \alpha_j \delta(C_j(x) = y)$$

Illustrating AdaBoost

Illustrating AdaBoost

