Data Mining
Classification: Alternative Techniques

Lecture Notes for Chapter 5
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)
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Artificial Neural Networks (ANN)

e Model is an assembly of
Inter-connected nodes
and weighted links

e Output node sums up
each of its input value
according to the weights
of its links

e Compare output node
against some threshold t
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General Structure of ANN
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Training ANN means learning
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Algorithm for learning ANN

e Initialize the weights (w,, Wy, ..., W,)

e Adjust the weights in such a way that the output
of ANN Is consistent with class labels of training
examples

— Objective function: E= Z[Y. —f(w, Xi)]2

— Find the weights w;’s that minimize the above
objective function

¢ e.g., backpropagation algorithm
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Support Vector Machines
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e Find a linear hyperplane (decision boundary) that will separate the data
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Support Vector Machines
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e One Possible Solution
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Support Vector Machines
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e Another possible solution
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Support Vector Machines
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e Other possible solutions
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Support Vector Machines
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e Which one is better? B1 or B2?

e How do you define better?
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Support Vector Machines
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e Find hyperplane maximizes the margin => B1 is better than B2
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Support Vector Machines
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Support Vector Machines

Wwx+b=1
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Support Vector Machines

e We want to maximize: Margin=

[W]

— Which is equivalent to minimizing: L(W)="—-

— But subjected to the following constraints:

(%)= if Wex. +b>1
-1 ifwex +b<—1

¢ This is a constrained optimization problem

— Numerical approaches to solve it (e.g., quadratic programming)
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Support Vector Machines

e What if the problem is not linearly separable?
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Support Vector Machines

e What if the problem is not linearly separable?
— Introduce slack variables

L - N
+ Need to minimize: L(w) = | w|f +C(Z§ik

¢ Subject to:

fxy=] ifwex +b D
—1 ifWexX +b<Cl+&>
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Nonlinear Support Vector Machines

e What if decision boundary is not linear?
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Nonlinear Support Vector Machines

e Transform data into higher dimensional space
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Ensemble Methods

e Construct a set of classifiers from the training
data

e Predict class label of previously unseen records
by aggregating predictions made by multiple
classifiers
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General Idea

o
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Why does it work?

e Suppose there are 25 base classifiers
— Each classifier has error rate, € = 0.35
— Assume classifiers are independent

— Probability that the ensemble classifier makes
a wrong prediction:

Z(ZIS] '(1-£)*" =0.06
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Examples of Ensemble Methods

e How to generate an ensemble of classifiers?
— Bagging

— Boosting
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Bagging

e Sampling with replacement

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

e Build classifier on each bootstrap sample

e The probability of NOT being selected in any n
trials is (1 — 1/n)"

> The probability of being selected at least once in n trials is 1- (1 — 1/n)"

— The probability of being selected in some particular trial is 1/n.
— The probability of not being selected in some particular trial is 1-1/n.
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Boosting

e An iterative procedure to adaptively change
distribution of training data by focusing more on
previously misclassified records

— Initially, all N records are assigned equal
weights

— Unlike bagging, weights may change at the
end of boosting round
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Boosting

e Records that are wrongly classified will have their
weights increased

e Records that are classified correctly will have

their weights decreased

Original Data

Boosting (Round 1)

Boosting (Round 2)

Boosting (Round 3)
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« Example 4 is hard to classify

* Its weight is increased, therefore it is more

likely to be chosen again in subsequent rounds
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Example: AdaBoost

e Base classifiers: C,, C,, ..., C-

e Error rate:
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Example: AdaBoost

e Weight update:
i _ W Jexp™ it Ci(x) =y,
| Z; |exp? ifCi(x) =Y,
whereZj IS thenormalizaonfactor

e If any intermediate rounds produce error rate
higher than 50%, the weights are reverted back
to 1/n and the resampling procedure is repeated

e Classification: .
C*(x) =arg maxZaJﬁ(Cj (X) = y)
y =1



Illustrating AdaBoost

Initial weights for each data point Data points
AL for training
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Illustrating AdaBoost
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