Data Mining Classification: Alternative Techniques

Lecture Notes for Chapter 5 (PART 1)

Agenda

Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (Condition) $\rightarrow y$
 - where
 - Condition is a conjunctions of attributes
 - y is the class label
 - LHS: rule antecedent or condition
 - RHS: rule consequent
 - Examples of classification rules:
 - (Blood Type=Warm) \land (Lay Eggs=Yes) \rightarrow Birds
 - (Taxable Income < 50K) \land (Refund=Yes) \rightarrow Evade=No

Rule-based Classifier (Example)

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

- R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
- R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
- R5: (Live in Water = sometimes) \rightarrow Amphibians

정보보호 및 지능형 IoT 연구실 Information Security & Intelligent IoT

Application of Rule-Based Classifier

- A rule r covers an instance x if the attributes of the instance satisfy the condition of the rule
 - R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
 - R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
 - R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
 - R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
 - R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	ves	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

Rule Coverage and Accuracy

For a rule $r: A \rightarrow y$

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule
 - Coverage(r) = |A| / |D|
- Accuracy of a rule:

|보보호 및 지능형 IoT 연구설 formation Security & Intelligent lo

- Fraction of records that satisfy both the antecedent and consequent of a rule
- Accuracy(r) = $|A \cap y| / |A|$

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) \rightarrow No

Coverage = 40%, Accuracy = 50%

6

How does Rule-based Classifier Work?

- R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
- R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
- R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
- R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
- R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal A turtle triggers both R4 and R5 \rightarrow weight or order? A dogfish shark triggers none of the rules \rightarrow default class

Characteristics of Rule-Based Classifier

- 상호 배타적 규칙(Mutually exclusive rules)
 - 각 레코드는 하나의 규칙에만 지배를 받아야 함
 - Classifier contains mutually exclusive rules if the rules are independent of each other
 - Every record is covered by at most one rule
- 포괄적 규칙(Exhaustive rules)
 - 분류기 규칙은 모든 가능한 레코드에 적용될 수 있어야 함
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule

DT에서 규칙 생성

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive Rule set contains as much information as the tree

생성된 규칙의 단순화 가능

정보보호 및 지능형 IoT 연구실 Information Security & Intelligent IoT

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Initial Rule:(Refund=No) \land (Status=Married) \rightarrow NoSimplified Rule:(Status=Married) \rightarrow No

규칙 단순화 효과

- Rules are no longer mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes
- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class

순서화된 규칙 집합(Ordered Rule Set)

- Rules are rank ordered according to their priority
 - An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

nformation Security & Intelligent Io

Rule Ordering Schemes

- Rule-based ordering
 - Individual rules are ranked based on their quality → 우선순위가 낮은 rule은 해석이 어려움
- Class-based ordering
 - Rules that belong to the same class appear together → rule 해석은 용이함.
 하지만, 우선 배치된 열등한 rule에 의해 우수한 rule이 간과될 수 있음

Rule-Based OrderingClass-B(Skin Cover=feathers, Aerial Creature=yes)
==> Birds(Skin Cover=feath
=> Birds(Body temperature=warm-blooded,
Gives Birth=yes) ==> Mammals(Body temperature
Gives Birth=no) =(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds(Body temperature
Gives Birth=no) =(Body temperature=warm-blooded,
Gives Birth=no) ==> Birds(Body temperature
Gives Birth=no) =(Aquatic Creature=warm-blooded,
Gives Birth=no) ==> Amphibians(Aquatic Creature
(Skin Cover=scales, Aquatic Creature=no)
==> Reptiles(Skin Cover=scales, Aquatic Creature=yes)
==> Fishes(Skin Cover=scale
(Skin Cover=scale)
(Skin Cover=scale)
(Skin Cover=scale)
==> Reptiles

Class-Based Ordering

(Skin Cover=feathers, Aerial Creature=yes) ==> Birds

(Body temperature=warm-blooded, Gives Birth=no) ==> Birds

(Body temperature=warm-blooded, Gives Birth=yes) ==> Mammals

(Aquatic Creature=semi)) ==> Amphibians

(Skin Cover=none) ==> Amphibians

(Skin Cover=scales, Aquatic Creature=no) ==> Reptiles

(Skin Cover=scales, Aquatic Creature=yes) ==> Fishes

같은 클래스에 속하는 rule을 연속적으로 배치함. 클래스 단위 정렬

Figure 5.1. Comparison between rule-based and class-based ordering schemes.

분류 규칙 생성 방법(Building Classification Rules)

- Rule 기반 분류기를 만들기 위해선 데이터 집합의 속성과 class label
 사이의 관계를 식별하는 rule을 추출할 필요 있음. 두가지 방법 존재
- Direct Method:
 - Extract rules directly from data
 - ◆ e.g.: 순차적 커버링(sequential covering), RIPPER, CN2, Holte's 1R
- Indirect Method:
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc).
 - e.g: C4.5rules

Direct Method: 순차적 커버링(Sequential Covering)

- Rule은 특정 평가 기준에 대해 greedy기법으로 생성됨
 둘 이상의 클래스를 포함하는 데이터 집합에서 한번에 한 클래스씩 rule을 추출함

 예) 먼저 조류를 분류하는 rule 생성 → 다음 포유류 → 양서류 → 파충류 → 어류.. 식으로 분류하는 rule을 생성함
 - 클래스 생성 순서는 클래스 크기, 비용 등을 고려하여 결정

- 1. Start from an empty rule
- 2. Grow a rule using the Learn-One-Rule function
- 3. Remove training records covered by the rule
- 4. Repeat Step (2) and (3) until stopping criterion is met

Example of Sequential Covering

Aspects of Sequential Covering

- 1. Rule Growing
- 2. Instance Elimination
- 3. Rule Evaluation
- 4. Stopping Criterion & Rule Pruning

1. Rule Growing

• Two common strategies

2. Instance Elimination

- Why do we need to eliminate instances?
 - Otherwise, the next rule is identical to previous rule
- Why do we remove "+" instances?
 - Ensure that the next rule is different
- Why do we remove "-" instances?
 - Prevent underestimating accuracy of rule

3. Rule Evaluation

 규칙의 성장과정에서 어떤 결합항을 추가(혹은 제거)할 지를 결정할 평가 기준이 필요함

보보호 및 지능형 IoT 연구실 formation Security & Intelligent IoT *n* : Number of instances covered by rule

f₊ : Number of positive instances covered by rule

k: Number of classes

p₊ : Prior probability for positive class

- FOIL's information gain = $p_1(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0})$ p_1 : Number of positive instances covered by new rule instances covered by new rule

3. Rule Evaluation (예제)

 Consider a training set that contains 60 positive examples and 100 negative examples.

Rule r1 covers 50 positive examples and 5 negative examples

Rule r2 covers 2 positive examples and no negative examples

Accuracy of r1=50/55=90.9%, accuracy of r2=2/2=100%

Laplace measure for r1=(50+1)/(55+2)=89.47%, r2=(2+1)/(2+2)=75%

Foil's information gain for r1=63.87, r2=2.83 (textbook's numbers are wrong)

$$p_1(\log_2 \frac{p_1}{p_1+n_1} - \log_2 \frac{p_0}{p_0+n_0})$$

r1 정보이득 계산: 50 * (log2 (50 /(50 + 5)) - log2(60/(60+100))) = 63.87
r2 정보이득 계산: 2 * (log2 (2/(2+0)) - log2(60/(60+100))) = 2.83 --> r1이 r2보다 더 좋은 규칙

4. Stopping Criterion and Rule Pruning

- Stopping criterion
 - Compute the gain
 - If gain is not significant, discard the new rule
- Rule Pruning
 - Similar to post-pruning of decision trees
 - Reduced Error Pruning:
 - Remove one of the conjuncts in the rule
 - Compare error rate on validation set before and after pruning
 - If error improves, prune the conjunct

Summary of Direct Method

- Grow a single rule
- Remove Instances from rule
- Prune the rule (if necessary)
- Add rule to Current Rule Set

Repeat

- For 2-class problem, choose one of the classes as positive class, and the other as negative class
 - Learn rules for positive class
 - Negative class will be default class
- For multi-class problem
 - Order the classes according to increasing class prevalence (fraction of instances that belong to a particular class)
 - Learn the rule set for smallest class first, treat the rest as negative class
 - Repeat with next smallest class as positive class

- Growing a rule:
 - Start from empty rule
 - Add conjuncts as long as they improve FOIL's information gain
 - Stop when rule no longer covers negative examples
 - Prune the rule immediately using incremental reduced error pruning
 - Measure for pruning: v = (p-n)/(p+n)
 - p: number of positive examples covered by the rule in the validation set
 - n: number of negative examples covered by the rule in the validation set
 - Pruning method: delete any final sequence of conditions that maximizes v

- Building a Rule Set:
 - Use sequential covering algorithm
 - Finds the best rule that covers the current set of positive examples
 - Eliminate both positive and negative examples covered by the rule
 - Each time a rule is added to the rule set, compute the new description length

 stop adding new rules when the new description length is d bits longer than the smallest description length obtained so far

- Optimize the rule set:
 - For each rule *r* in the rule set **R**
 - Consider 2 alternative rules:
 - Replacement rule (r*): grow new rule from scratch
 - Revised rule(r'): add conjuncts to extend the rule r
 - Compare the rule set for r against the rule set for r* and r'
 - Choose rule set that minimizes MDL principle
 - Repeat rule generation and rule optimization for the remaining positive examples

Indirect Methods(의사결정 트리 등 사용)

Rule Set

Indirect Method: C4.5rules

- Extract rules from an unpruned decision tree
- For each rule, r: $A \rightarrow y$,
 - consider an alternative rule r': A' → y where A' is obtained by removing one of the conjuncts in A
 - Compare the pessimistic error rate for r against all r's
 - Prune if one of the r's has lower pessimistic error rate
 - Repeat until we can no longer improve generalization error

Indirect Method: C4.5rules

- Instead of ordering the rules, order subsets of rules (class ordering)
 - Each subset is a collection of rules with the same rule consequent (class)
 - Compute description length of each subset
 - Description length = L(error) + g L(model)

 g is a parameter that takes into account the presence of redundant attributes in a rule set (default value = 0.5)

- L(error): 잘못 분류된 instance 인코딩에 필요한 bit 길이
- L(model): 모델을 인코딩하는데 필요한 비트수
- Description Length가 가장 적은 클래스를 선택함

Example

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

C4.5 versus C4.5rules versus RIPPER

C4.5rules:

(Give Birth=No, Can Fly=Yes) \rightarrow Birds

(Give Birth=No, Live in Water=Yes) \rightarrow Fishes

(Give Birth=Yes) \rightarrow Mammals

(Give Birth=No, Can Fly=No, Live in Water=No) \rightarrow Reptiles

 $() \rightarrow Amphibians$

RIPPER:

(Live in Water=Yes) \rightarrow Fishes

(Have Legs=No) \rightarrow Reptiles

(Give Birth=No, Can Fly=No, Live In Water=No) \rightarrow Reptiles

(Can Fly=Yes,Give Birth=No) \rightarrow Birds

 $() \rightarrow Mammals$

C4.5 versus C4.5 rules versus RIPPER

C4.5 and C4.5rules:

			PREDICTED CLASS			
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	2	0	0	0	0
CLASS	Fishes	0	2	0	0	1
	Reptiles	1	0	3	0	0
	Birds	1	0	0	3	0
	Mammals	0	0	1	0	6

RIPPER:

			PREDICTED CLASS			
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	0	0	0	0	2
CLASS	Fishes	0	3	0	0	0
	Reptiles	0	0	3	0	1
	Birds	0	0	1	2	1
	Mammals	0	2	1	0	4

Advantages of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees

Instance-Based Classifiers

- Instance based learning(memory based learning
 이라고도함):
 - explicit generalization을 하지 않고 이전의 데이터(memory에 있는 데이터)를 토대로 새로운 데이터를 분류함
 - 사전 모델을 만들지 않음(소극적 학습기:lazy learner) → Rote Classifier, KNN 등
 - ◆Cf. DT는 귀납적으로 모델을 만듦(적극적 학습기: eager learner)

Instance Based Classifiers

- Examples:
 - Rote-learner
 - ◆훈련 데이터 전체를 암기한 후, 시험 사례 속성이 훈련 데이터와 정확히 일치할 때만 분류를 수행함
 - 단점: 일부 시험 항목들이 어떠한 훈련 예와도 일치하지 않을 경우 → 분류 안됨 (Nearest neighbor(인접 이웃) 찾기로 어느정도 해결함)

 Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

- Nearest neighbor
 - ◆시험 사례의 속성과 상대적으로 유사한 훈련 예를 찾음

Uses k "closest" points (nearest neighbors) for performing classification

Instance Based Classifiers

• Rote learner 사례

정보보호 및 지능형 IoT 연구실 Information Security & Intelligent IoT

	Day	Temperature	Outlook	Humidity	Windy	Play Golf?
	07-05	hot	sunny	high	false	no
	07-06	hot	sunny	high	true	no
	07-07	hot	overcast	high	false	yes
	07-09	cool	rain	normal	false	yes
	07-10	cool	overcast	normal	true	yes
	07-12	mild	sunny	high	false	no
	07-14	cool	sunny	normal	false	yes
	07-15	mild	rain	normal	false	yes
	07-20	mild	sunny	normal	true	yes
	07-21	mild	overcast	high	true	yes
	07-22	hot	overcast	normal	false	yes
	07-23	mild	rain	high	true	no
	07-26	cool	rain	normal	true	no
	07-30	mild	rain	high	false	yes
►	today	cool	sunny	normal	false	yes

* 기존 속성 중에서 오늘의 날씨(온도, 시야, 습도, 바람)과 정확히 일치하는 속성을 찾아, class가 결정됨(play golf: yes)

참고: Darmstadt Knowledge Engineering Group

Nearest Neighbor Classifiers

- Basic idea of Nearest Neighbor:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute **distance** to other training records
 - **Identify** *k* nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

(a) 1-nearest neighbor

(b) 2-nearest neighbor

(c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

• 점과 가까운 영역을 표시함

 boundaries of these regions correspond to potential decision boundaries of 1NN classifier

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, w = 1/d²

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive

Example: PEBLS

- PEBLS: Parallel Examplar-Based Learning System (Cost & Salzberg)
 - Works with both continuous and nominal features

 For nominal features, distance between two nominal values is computed using modified value difference metric (MVDM)

- Each record is assigned a weight factor
- Number of nearest neighbor, k = 1

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Distance between nominal attribute values:

d(Single,Married)

d(Single, Divorced)

$$= |2/4 - 1/2| + |2/4 - 1/2| = 0$$

d(Married, Divorced)

$$= |0/4 - 1/2| + |4/4 - 1/2| = 1$$

d(Refund=Yes,Refund=No)

Class	Marital Status				Close
Class	Single	Married	Divorced		Class
Yes	2	0	1		Yes
No	2	4	1		No

Class	Refund		
Class	Yes	No	
Yes	0	3	
No	3	4	

$$d(V_1, V_2) = \sum_{i} \left| \frac{n_{1i}}{n_1} - \frac{n_{2i}}{n_2} \right|$$

ı.

.

Example: PEBLS

Tid	Refund	Marital Status	Taxable Income	Cheat
Х	Yes	Single	125K	No
Y	No	Married	100K	No

Distance between record X and record Y:

$$\Delta(X,Y) = w_X w_Y \sum_{i=1}^d d(X_i,Y_i)^2$$

where:

 $w_X = \frac{\text{Number of times X is used for prediction}}{\text{Number of times X predicts correctly}}$

 $W_X \cong 1$ if X makes accurate prediction most of the time

 $w_{\chi} > 1$ if X is not reliable for making predictions

Contents

Bayesian Classifier

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C \mid A) = \frac{P(A, C)}{P(A)}$$
$$P(A \mid C) = \frac{P(A, C)}{P(C)}$$

Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes $(A_1, A_2, ..., A_n)$
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

- Approach:
 - compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$

- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$
- How to estimate $P(A_1, A_2, ..., A_n | C)$?

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j .
 - New point is classified to C_j if $P(C_j) \prod P(A_i | C_j)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

- e.g., $P(No) = 7/10$,
 $P(Yes) = 3/10$

- For discrete attributes:
 P(A_i | C_k) = |A_{ik}|/ N_{ck}
 - where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k
 - Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

정보보호 및 지능형 IoT 연구실 Information Security & Intelligent Io

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Normal distribution:

$$P(A_i | c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(A_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 | No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$P(C \mid A_1A_2...A_n) = \frac{P(A_1A_2...A_n \mid C)P(C)}{P(A_1A_2...A_n)}$$

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7 P(Refund=No|No) = 4/7 P(Refund=Yes|Yes) = 0 P(Refund=No|Yes) = 1 P(Marital Status=Single|No) = 2/7 P(Marital Status=Divorced|No)=1/7 P(Marital Status=Married|No) = 4/7 P(Marital Status=Single|Yes) = 2/7 P(Marital Status=Divorced|Yes)=1/7 P(Marital Status=Married|Yes) = 0 For taxable income: If class=No: sample mean=110 sample variance=2975

<mark>정보보호 및 지능형 IoT 연구실</mark> nformation Security & Intelligent Ioī P(X|Class=No) = P(Refund=No|Class=No) × P(Married| Class=No)

 $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

•
$$P(X|Class=Yes) = P(Refund=No|Class=Yes)$$

 $\times P(Married|Class=Yes)$
 $\times P(Income=120K|Class=Yes)$
 $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Since P(X|No)P(No) > P(X|Yes)P(Yes) Therefore P(No|X) > P(Yes|X) => Class = No

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original:
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace: $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$
m-estimate: $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$

c: number of classes

p: prior probability

m: parameter

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

P(A|M)P(M) > P(A|N)P(N)

=> Mammals

정보보호 및 지능형 IoT 연구실 Information Security & Intelligent IoT

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

