Data Mining
Classification: Basic Concepts, Decision
Trees, and Model Evaluation

Lecture Notes for Chapter 4



Classification: Definition

e Given a collection of records (training set )

— Each record contains a set of attributes, one of the
attributes is the class.

e Find a model for class attribute as a function
of the values of other attributes.
o ﬁ;‘t}: SdAI FEE X 9&3 did=0 tHoH A, V=%t
20 2dHAE F00I=
— Atest set is used to determlne the accuracy of the
model

— Usually, the given data set is divided into training
and test sets, with training set used to build the
model and test set used to validate It.






lllustrating Classification Task

Tid  Attribl Attrib2 Attrib3  Class Learnlng

1 Yes Large 125K No algorith m

2 No Medium 100K No

3 |No Small 70K No +H

4 Yes Medium 120K No | ndUCtion

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No Learn

8 |No Small 85K Yes Model

9 |No Medium | 75K No \

10 | No Small 90K Yes ﬂ

. Model l
Training Set /

Apply

Tid Attribl  Attrib2  Attrib3  Class Model

11 | No Small 55K ?

12 | Yes Medium 80K ? )

13 | Yes Large 110K |2 Deduction

14 | No Small 95K ? Od g. I—1

15 | No Large 67K ?

Test Set
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Examples of Classification Task

o SAUME(tumor cells)7} L& K| S ()X £ E

o TH A (protein)2| 2Kt 27} alpha-helix 21 K],

beta-sheet@! X|, random coil 2| X| &= lIC},

[Md0mi 13N HOLI WS NaN]




Classification Techniques

e Decision Tree based Methods(2JAIAH EE|)
e Rule-based Methods(T+%! 7|8t 7| &)

e Memory based reasoning

e Neural Networks

e Naive Bayes and Bayesian Belief Networks

e Support Vector Machines



Example of a Decision Tree

\ \Y S
> >
FUA o
I o\\(\ 5>
<& £ o Splitting Attribute
Tid Refund Marital Taxable pitt ,gl iutes
Status  Income Cheat L0
2ELC S
1 |Yes Single 125K No (root node) ¥ \
1
2 |No Married [100K  [No Refund !
1
3 No Single 70K No Y‘es/ :NO v T
4 |Yes  |Married [120K  [No NO MarSt [‘”‘e”‘a' node)
> |No Divorced | 95K ves ‘ Single, Divorced w‘arried
6 No Married |60K No
7 |Yes Divorced | 220K No Taxinc NO
8 |No Single 85K Yes <80|§/ \> 80K
9 No Married |75K No NO YES
10 [No Single  [90K Yes dYrE
(leaf, terminal node)
Training Data Model: Decision Tree

Cheat = Defaulted Borrower2 ZtF
8



Another Example of Decision Tree

Tid Refund Marital

© 00 N o o b~ w N P

=
o

Yes
No
No
Yes
No
No
Yes
No
No
No

o{\o‘b\ o{\db\ . \)o‘{’
O @ & &
R R o o

Taxable

Status  Income Cheat

Single 125K No

Married |100K No

Single 70K No

Married |120K No

Divorced |95K Yes

Married |60K No

Divorced | 220K No

Single 85K Yes

Married |75K No

Single 90K Yes

Mar St Single,

Marri‘ey \%ﬁ)rced

NO Refund
/X
NO TaxInc
< 80I§/ \> 80K
NO YES

There could be more than one tree that
fits the same data!



Decision Tree Classification Task

Tid  Attribl Attrib2 Attrib3  Class

1 Yes Large 125K No

2 No Medium 100K No

3 No Small 70K No

4 Yes Medium 120K No

5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No

8 No Small 85K Yes

9 No Medium 75K No

10 | No Small 90K Yes
Training Set

Tid  Attribl Attrib2 Attrib3  Class

11 | No Small 55K ?

12 | Yes Medium 80K ?

13 | Yes Large 110K ?

14 | No Small 95K ?

15 | No Large 67K ?

Test Set

Tree

Induction

algorithm

A
Induction
Learn
Model \
Model ll

Apply / Decision
Model Tree

/

Deduction
Ao

10



Apply Model to Test Data

Test Data
Start from the root of tree.

Refund Marital Taxable

Status Income Cheat

1

1

1
v

No Married |[80K ?

Refund
o\
NO Mar St

Single,%rced N\‘/Iarried

TaxInc NO
<80V \> 80K
NO YES

11



Apply Model to Test Data

Test Data

Refund Marital Taxable

- Status Income Cheat

PP No Married |80K ?

Refund |~
o\
NO Mar St

Single,%rced N\‘/Iarried

TaxInc NO
< SOV \> 80K
NO YES

12



Apply Model to Test Data

Test Data

Refund Marital Taxable

Status Income Cheat

__~»|No Married |80K ?
Refund T
Y‘y QO &«
NO Mar St
Single,%rced N\‘/Iarried
TaxInc NO
< 8OV \> 80K
NO YES

13



Apply Model to Test Data

Test Data

Refund Marital Taxable
Status Income Cheat

Refund /,/
Y‘y QO /////
NO MarSt |~
Single,%rced N\‘/Iarried
TaxInc NO
< 8OV \> 80K
NO YES

14



Apply Model to Test Data

Test Data

Refund Marital Taxable

Status Income Cheat

No Married |[80K ?

Refund ~
Yef \Nf
NO Mar St e

Single,%rced \Il/larried

TaxInc NO
< 8OV \> 80K
NO YES

15



Apply Model to Test Data

Test Data

Refund Marital Taxable
Status Income Cheat

Refund -
Yef QO ////
NO Mar St /,/’
Single, yd)rced \iﬂarried Assign Cheat to “No”
TaxInc NO B
< 8OV \> 80K
NO YES

16



Decision Tree Classification Task

Tid  Attribl Attrib2 Attrib3  Class Tree_

1 | Yes Large 125K | No Induction
2 |No Medium | 100K | No algorithm
3 No Small 70K No

4 Yes Medium 120K No |ndUCti n h
5 No Large 95K Yes

6 No Medium 60K No

7 Yes Large 220K No Learn

8 |No Small 85K Yes Model

9

10

No Medium | 75K No |\
No Small 90K Yes ﬂ
.. Model l

Training Set /

Apply Decision

Tid Attribl  Attrib2  Attrib3  Class Model Tree
11 | No Small 55K ?
12 | Yes Medium 80K ? )
13 |ves |Large 1k B Deduction
14 | No Small 95K ?
15 | No Large 67K ?

Test Set

17



Decision Tree Induction(2JAIEHEEE| 1+5)

e Many Algorithms:
— Hunt’s Algorithm (one of the earliest)
— CART
— ID3, C4.5
— SLIQ,SPRINT

18



Tree Induction (E&| 1+5)

e Greedy strategy.

— Split the records based on an attribute test that optimizes certain
criterion.

- 3 S I|E0 IR 20l £

fi0
M

g J|EZoz Mgt

10

Rl

e Issues
— Determine how to split the records

[ « =M AI® XA attribute test condition)S HE A XIAE 2HO1J}

« X|M9] ES(best spli)2 HHSH 2 E A2

— Determine when to stop splitting

19



e Let D, be the set of training records
that reach a node t

e General Procedure:

@

@

If D, contains records that
belong the same class y,, then
tis a leaf node labeled as vy,

If D, is an empty set, then tis
a leaf node labeled by the
default class, y,

If D, contains records that
belong to more than one
class, use an attribute test to
split the data into smaller
subsets. Recursively apply the
procedure to each subset.

Cheat = Defaulted Borrower
20

Marital
Status

Taxable
Income

Defaulte
Borrower

.

1 Yes Single 125K

2 No Married 100K No
3 No Single 70K No
4 Yes Married 120K No
5 No Divorced |[95K Yes
6 No Married 60K No
7 Yes Divorced |[220K No
8 No Single 85K Yes
9 No Married 75K No
10 |No Single 90K Yes

?



Tid |Home

Hunt’s Algorithm i

Yes
No
No

Yes

Defaulted= % Yes NoO
no

Defaulted
=Nno

No
No

Yes
No
No

© 00 N O 0 h~ WO N =

-
o

No

SR ey B0
Single 125K No .
Married | 100K No '
Single 70K No
Married 120K No
Divorced [95K Yes
Married 60K No
Divorced |[220K No
Single 85K Yes
Married 75K No
Single 90K Yes

Marital
Status

Married

>= 80K

e |

Defaulted
=no

Taxable Defaulted
Income _ 10
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[=X
)

0

(Continuous)

[=X
)

(Binary split)

(Multi-way split)
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HEY 0| 7|u3 2
o [}I= 2 (Multi-way split):
2| CIE &AM 212 AI2010 J1=0 2 [IE|Mo 2 B8otL}
Family Luxury
o 0]XI 28 (Binary split):
&M US TN RSSO FYULILL (AH MEINZ0| TR
Sports, | - Family,
Lueury) Famiy  OR o (Sports)



il
H
Kio

e

0J
ol
1|
11

7]

IHE|

0lJ
o8

0J

I

AHE0LH Jis

ol
ND

<0

k

1

)
J

0
N

Large

Small

Mediu

il
IH
R

Ch (& MEJIMZ0l 228

oz matsl

t

S
=

X
=

IH

o &

M

| m—
T

ol

o

ar

{Small}

{Medium,

OR

Large}

{Large}

{Small,

Medium}

o 18Ol 2EF EE2 0HIP

{Medium}

{Small,

Large}

24



« ME™ ZMO0| HIT= 0] A (discretization)

- A& ALE0 O

A X diH
o1 od

Ulo

« 0]Zl ZA(binary decision): (A< V) or (A > V)
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Taxable
Income
> 80K?

Taxable
Income?

No

[10K,25K) [25K,50K) [50K,80K)

(i) Binary split (if) Multi-way split
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Tree Induction (Eg&| 1)

e Greedy strategy.

— Split the records based on an attribute test that optimizes certain
criterion.

- 3 S I|E0 IR 20l £

fi0
M

g J|EZoz Mgt

10

Rl

e Issues
— Determine how to split the records

o =M A8 X H(attribute test condition)S H{EAH| XIAE A 01T}

[ o X|MO| E8(best split)2 HEH ™EE A21J}?

— Determine when to stop splitting

27



ke

Mol &S OF

A & Zdel7}2

Ok

Before Splitting: 10 records of class 0,
10 records of class 1

~Student
. ID?

Which test condition is the best?

A HIHC] “Own Car'& AI20l= BLE L 5 Wl “ Car Type” & AI20l= LI BU &% (purity) It
=2 Egd

282 UM B&T(impurity) B2 8& HT(impurity measure) J1E 20l 0l E=T8 EFc=
dgoxr FE& AT
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ke

Mol &S OF

Al g Zielvt?

Ok

e Greedy approach:
. 24 = S 8A(homogeneous class) 2RI} & T8 S80I}

| S
- EE9 E@=k&E ZFE BRI AL

CO: 5 C0: 9
Cl:5 Cl: 1
Non-homogeneous, Homogeneous,

High degree of impurity Low degree of impurity

29



e

2| Mo| 282 o}

Al g Aot

Ok

= SE0A A HIES UEIWHE A X p(ilt)
- LEt0IM SHA B A= YIESY HIEES
FE8d20 158 FdE F22M, p(1)t) =1 - p(O[t) I} A& S
=0l p 2 LEHHDI X STt

| Before Splitting: 10 records of class 0,
= P M0, 10 records of class 1

. B8N IYPA BEXE=(0.5,0.5)0]10
« OwnCar® 88 A|

(0.6,0.4)9} (0.4,0.6)01,
« CarTypel=2 28 A

(1/4,3/4), (1,0), (1/8,7/8)0IL}.

> 2 SEQIM SHA BEI} BE(skewed)0] TITE SOIE
20l 2 22



_JIL\_E I—lE

c—1

- oy

i=0

e Gini Index

e Entro <
Py = p(ilt) « log, p(ilt)
i=0

e Misclassification error
1 — max; [p(i|t)]

. Y2 BRI EO] TO2 XS B
. 22 ERIHE E|X| QOtM, 12H £



-k SRR 4
— NVj): AN == vist FHHE H 7= 5
e Gain ¢} Z[CH2} = Children'= =2| weighted &
=l 4 2|29}
olfI()===5% HE (0. Entropy), then A, is
called information gain

32




Tree Induction (E2| %)

e Greedy strategy.

— Split the records based on an attribute test that optimizes certain
criterion.

- 3 S I|E0 IR 20l £

fi0
M

g J|EZoz Mgt

10

Rl

e Issues
— Determine how to split the records

o =M A8 X H(attribute test condition)S H{EAH| XIAE A 01T}

[ o X|MO| E8k(best split)2 HEH AT HO1I}? - Gini XIF

— Determine when to stop splitting

33



e Gini Index for a given node t :

GINI(t) =1- > [p(j [O)F

(P(j ) === p]

For a 2-class problem:

1

09}

08}

0.7}

06}

05}

P
Entropy \

/s \
i
N
)/ N
J

Gini

!
04t/

03F |
l|l|l
02}/
/

01H
|
|

Misclassification
error

|
0
0

1 L 1 1 1 1 1 1
0.1 D2 03 04 05 06 07 08
P

+ = tof| A class joll S58t+ dlZ =9 7).

— Maximum (1 - 1/n,) when records are equally
distributed among all classes, implying least

Interesting information

— Minimum (0) when all records belong to one class,

Implying most interesting information

Cl 0 Cl 1 Cl 2 Cl 3
Cc2 6 Cc2 5 Cc2 4 Cc2 3
Gini=0.000 Gini=0.278 Gini=0.444 Gini=0.500

34




Sk ML GINI

= Min value of the index:
— A class with a relative frequency of 1, all the others 0

1—_2_:1;03:1—12:0 GINI(®) =1->"[p(j 1))

= Max value of the index:
— n, classes with the same frequency:

e | 1 1
1—2102:1—2(;)2:1—%(”—)2: -
j=1 j=1 c C

35



GINI A4 At

GINI(t) =1- > [p(j [O)F

C1 0 P(C1)=0/6=0 P(C2)=6/6=1

C2 6 Gini=1-[P(C1)2+P(C2)2]=1-0-1=0
C1 1 P(C1) = 1/6 P(C2) = 5/6

C2 = Gini =1 —[ (1/6)2+ (5/6)2] = 0.278

C1 2 P(C1) =2/6 P(C2) =4/6

c2 4 Gini = 1 — [ (2/6)2 + (4/6)2 ] = 0.444

36



e Used in CART, SLIQ, SPRINT.

e When a node p is split into k partitions (children), the
guality of split is computed as,

K

n. :
mmW=Zﬁmmm
=1

where, n; = number of records at child I,
n = number of records at node p.
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F: Computing GINI Index

e Splits into two partitions
e Effect of Weighing partitions:

— Larger and Purer Partitions are sought for.

Yes

Node N1

= 0.4898

No

Node N2

I E N19| X|L|X| 4
=1 - [(4/7)2+ (3/7)7]

= N29| X|L| X| 4

= 1 — [(2/5)2+ (3/5)2]

=0.48

Parent
CO 6
C1 6
Gini = 0.500

Children'= E.9Q| Gini
X271 da
rile)

= (7/12)*0.4898 +
(5/12) * 0.48 = 0.486



o| 2% Computing GINI Index

Parent
(B2 0 ct| 6
Yes No C2 6
Gini = 0.500
. Node N1 Node N2
Gini(N1)
= 1 - (L/5)2— (4/5)2 /\
=0.32 [ N1 N2)
Gini(N2) cj1fs o -
=1 — (5/7)2— (2/7)2 Ci k4 2 Gini(Children)7s Eat
Gini=0.371 7/12 * 0.408
=0.371

M

7hCl 3o D2 £4 BE A 80| $4 A



HEH £/ 2% Computing Gini Index

o =Y H£H2 0|7 2 2Tt otL 2, ot2fe| WM H Cta = (multi-way
split) 7t &
— Ct= 2%0| o|X B ELCT O 2 Gini X|$= I (0|5 282 A= &5
=220 €8 Z1E me rgeOF 740| o2 = 24 &)

Multi-way split Two-way split

(find best partition of values)

CarType CarType CarType

Gini(Family) =1 — (1/4)2— (3/4)2 =0.375
Gini(Sports) =1 —(8/8)2—(0)2 =0
Gini(Luxury) = 1 — (1/8)"2 — (7/8)*2=0.218

* Weighted Gini = 4/20 * 0.375 + 8/20 * 0.218 = 0.163

Family | Sports |Luxury {Sports, ] {Family,
c1 | 1 8 1 Luxuryy |(Famv} {Sports} | uxury)
C2 3 0 7 C1 9 1 C1 8 2
Gini 0.163 €2 7 3 e 10

Gini 0.400 Gini 0.167

40




A= £/ 23 Computing Gini Index

e Use Binary Decisions based on one T emer  |Statie Income | Detaulted
value .
_ o 1 Yes Single 125K No
e Several Choices for the splitting value > |No Married | 100K No
— Number of possible splitting values 3 [No Single | 70K No
= Number of distinct values 4 |Yes Married | 120K No
e Each splitting value has a count matrix : :" ;“mfczd zzi :‘*S
associated with it ° ST °
] 7 Yes Divorced |220K No
— Class counts in each of the A I s Ves
partitions, A<vand A>v o |no Married | 75K No
e Simple method to choose best v 10 |No Single  |90K Yes

— For each v, scan the database to
gather count matrix and compute
its Gini index

— Computationally Inefficient!
Repetition of work.

Taxable
Income
> 80K?

No
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o Ol24O| O = Taxable Income £49| ZE g2 £% /K| FEE
A3 HAESH A0 72 7| &=L 2 28 (0, 1002t 120 &40
CHo S7Hak 2l 1108 7|22 =2 22d)

— O] =, Zp2to| FL7kof| CH3H Gini K| == A4t
— 7t &2 Gini ¢4= 7HX = 8% = v=972 8% %

Taxable Income

Sorted Values 70 ‘ 75 ‘ 85 ‘ 90 ‘ 95 | 100‘ 120 ‘ 125 ‘
Split Positions

<=2 <=2 I<=| 2 |<=|>2<=|>|<=| >|<=|><=[>|<=| >[<=| > [<=| >

Yes o|3(0/ 34030 (3122|1303 (03|03 |03 |0

No o071/ 6|2 5(3 (43| 4|3 | 4|3 (4|4 (3|5 2|6|1]|7|0

Gini 0.420 | 0.400 | 0.375 | 0.343 | 0417 | 0.400 | 0.300 || 0.343 | 0.375 | 0.400 | 0.420

Gini(2t 55 &%) =1 - (3/10)2— (7/10)2 =0.42
Gini(@6534)=1-(02-(0)2 =0

Gini(%t 65 3H) = 1 — (3/9)"2 — (6/9)"2= 0.4444

* Weighted Gini(Zt 65 4) =1/10 * 0 + 9/10 * 0.4444 = 0.4 42



Tree Induction (E2| %)

e Greedy strategy.

— Split the records based on an attribute test that optimizes certain
criterion.

- 3 S I|E0 IR 20l £

fi0
M

g J|EZoz Mgt

10

Rl

e Issues
— Determine how to split the records

o =M A8 X H(attribute test condition)S H{EAH| XIAE A 01T}

[ e X|MO| E8kpest split)2 {EH| ZAT 21T} - Entropy

— Determine when to stop splitting

43



Alternative Splitting Criteria based on INFO

e Entropy at a given node t:
Entropy(t) =—-= p(J [t)log p(] [t)

(NOTE: p(j | t) is the relative frequency of class j at node t).

— Measures homogeneity of a node.

¢ Maximum (log n.) when records are equally distributed
among all classes implying least information

¢ Minimum (0.0) when all records belong to one class,
Implying most information

— Entropy based computations are similar to the
GINI iIndex computations

44



Alternative Splitting Criteria based on INFO

= Min value of the index:

— A class with a relative frequency of 1, all the others 0

nc
— > (pjlogp;) =
71=1

= Max value of the index:

—1logl =0

— n, classes with the same frequency:

Ne

e 1 1
- jzzl(l?j logpj) = — Z(n—c log n_c) =

1 1

= —n.— log — = —(log 1 — logn.) = logn.

Ne Ne

j=1

45

For a 2-class problem:
1

08t EntroV
08
ol / N\

06} / \\

03+ /

!
02 / Misclassification
error
0.1 /
|

osr / Gini \ 1
04} \ 4

U 1 L 1 1 1 1 1 1 1
0 o1 02 03 04 05 06 07 08 089
P

1



Examples for computing Entropy

Entropy(t) =—> p(]J |t)log, p(]|t)

Cl O
C2 6
Cl 1
C2 5
Cl 2
C2 4

P(C1l)=0/6=0 P(C2)=6/6=1
Entropy=-0log0-1log1=-0-0=0

P(C1) = 1/6 P(C2) = 5/6
Entropy = — (1/6) log, (1/6)— (5/6) log, (5/6) = 0.65

P(C1) = 2/6 P(C2) = 4/6
Entropy = — (2/6) log, (2/6)— (4/6) log, (4/6) = 0.92

46



Splitting Based on INFO...

e Information Gain:

GAIN , = Entropy(p) —(z?] Entropy(i))

Parent Node, p is split into k partitions;
n, IS number of records in partition |
— Measures Reduction in Entropy achieved because of

the split. Choose the split that achieves most reduction
(maximizes GAIN)

— Used in ID3 and C4.5

— Disadvantage: Tends to prefer splits that result in large
number of partitions, each being small but pure.



Splitting Based on INFO...

e Gain Ratio:

: GAIN_ _ < N N
GaInRATIO_ = _ — 3 el
= SolitINFO SplitINFO = —% n log ,

Parent Node, p is split into k partitions
n; is the number of records in partition |

— Adjusts Information Gain by the entropy of the
partitioning (SplitINFO). Higher entropy partitioning
(large number of small partitions) is penalized!

— Used in C4.5

— Designed to overcome the disadvantage of Information
Gain



Tree Induction (E2| 1)

e Greedy strategy.

— Split the records based on an attribute test that optimizes certain
criterion.

- 3 S I|E0 IR 20l £

fi0
M

g J|EZoz Mgt

10

Rl

e Issues
— Determine how to split the records

« &M AI® XA attribute test condition)S HE A XIAE 2010}

[ .« X|MO| B8Hbest split)2 O] EH| ZAT 2H017}? — Classification Error

— Determine when to stop splitting
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Examples for Classification Error

Error(t) =1-maxP(i|t)

Cl O P(C1l)=0/6=0 P(C2)=6/6=1

C2 6 Error=1-max (0,1)=1-1=0

C1 1 P(C1)=1/6 P(C2) =5/6

C2 5 Error =1 —-max (1/6, 5/6) =1 -5/6 = 1/6
C1 2 P(C1) =2/6 P(C2) =4/6

C2 4 Error =1 —-max (2/6, 4/6) =1 —-4/6 = 1/3

50



Splitting Criteria based on Classification Error

e Classification error at a node t :

Error(t) =1-maxP(i|t)

Let p(i|t) denote the fraction of records belonging to class ¢ at a given node
t. We sometimes omit the reference to node ¢ and express the fraction as p;.

e Measures misclassification error made by a node.

¢ Maximum (1 - 1/n.) when records are equally distributed
among all classes, implying least interesting information

¢ Minimum (0.0) when all records belong to one class, implying
most interesting information

51
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Figure 4.27. Example of two decision frees generated from the same training data.
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Splitting Criteria based on Classification Error

= Min value of the index:
— A class with a relative frequency of 1, all the others 0

l— max p;=1—-1=0

1=1...n¢

= Max value of the index:
— n. classes with the same frequency:

1
l— max p;=1— —
oo, P oy
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Comparison among Splitting Criteria

For a 2-class problem:

1

09

0.8

0.7

0.6

0.5

0.4+

0.3

0.2F

0.1

a

Misclassification
error
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Misclassification Error vs Gini

@ Parent

Yes No C1 7 ME(Parent) = 1-
max(7,3) /10 = 1-

C2 3 _
Node N1 Node N2 — 7/10=0.3

Gini = 0.42
Gini(N1 L
-1 _( (3/)3)2_ (0/3)2 Gini(Children)

CiL| 3| 4 + 7/10 * 0.489

Gini(N2) 2l ol 3 =0.342
=1—(4/7)2- (3/7)? . - .
— 0.489 Gini=0.342 Gini improves !!

Misclassification Error
BIERLE L= mesdEE =0 ME(Children) = 3/10 * 0 +
ME(N2)=1 - max(4,3)/7 = 1-4/7 = 0.428 7/10 * 0.428 = 0.299
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Tree Induction (E2| %)

e Greedy strategy.

— Split the records based on an attribute test that optimizes certain
criterion.

- 3 S I|E0 IR 20l £

fi0
M

g J|EZoz Mgt

10

Rl

e Issues
— Determine how to split the records

o &M AI™® X H(attribute test condition)S HEH| X - E 2010}

o X|MO| B&(best split)2 HEH EAHE HOII}? - Classification Error

[Determlne when to stop splitting (g 2= AlH) ]
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olAES E| 7| 2/ £

o

— Inexpensive to construct
— Extremely fast at classifying unknown records
— Easy to Interpret for small-sized trees

— Accuracy Is comparable to other classification
techniques for many simple data sets
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O|AIZ’d E| Ald|: c4.5

e Simple depth-first construction.
e Uses Information Gain
e Sorts Continuous Attributes at each node.
e Needs entire data to fit in memory.
e Unsuitable for Large Datasets.
— Needs out-of-core sorting.

e You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.qz
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http://www.cse.unsw.edu.au/%7Equinlan/c4.5r8.tar.gz

OIAES Ele| 8 O]+

- ZHUYO MY SGE0], HAE BROILE 2 X 2/ =X &2 HOIHO

CHoli M= 2771 292 H AHX|= 24|

—  Cf. Underfitting(5: =X g}

e Costs of Classification (=

4
fus
QE)

LS 1=

- HEZ HOIH e, aX3 HojH, S HO|He| 82, =70 B2 AlZHo] ZE

IT .- —

— N3r =2 O|AMAN ER|E MAMGLT| Qo] ke

0.

LS i—

oOT, I=Tr LS =

H[ 0| 8 14
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Underfitting and Overfitting (Example)

1 il T o o T - R
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%?:vv %’ n' :: LI : '= ;' - ¥ ® :‘ ."“ "G'gv o va .
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: e 5, e L I T B . .
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+" ‘l‘% * e gw i Vv vv%vgv N - LL/ v
[:]25 a® . "" ® ‘E"v g %‘E" o vvva o Il' "‘ "‘h"_ . . ]
T A AR S L Tt e Circular points:
..e: 'o:‘a v v g Erv T evVy “Fv v v ¥ ¥ ‘ . e *°
of . e FTESTUF 59 vo 7T T o4 0.5<sqrt(x2+x,2) <1
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Underfitting and Overfitting

dverfittilng « Overfitting:
- |« =a0M 2y e 1S
LT : Sotot &2 SEXISH)| (12
| 22 (lds S0S
. OHKITH Ea3Jt 4P HIES

| 0 EELUI HE0l, A
— Training set | XIsHll LHOHM S O AlA

— - - Testset
HE= =22 7l =8t

R

0 S0 100 150 1 20 250 300

Mumber of nodes

Underfitting: when model is too simple, both training and test errors are large

62



4
+
35} +
T -+
25+ o o *
2 B - -
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Decision boundary is distorted by noise point
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x
35} X -
3t % .
25 o e X -
2t . . . i
Misclassified
15} O<+— Dpoints 1
L
1t 0/ \ X
05 O O .
O

D 1 1 1 1 1 1 1

0 05 1 1.5 2 25 3 35 4

HE2 9| training datadl| 2|0 2} Hek|= FF7I S

Insufficient number of training records in the region causes the
decision tree to predict the test examples using other training records
that are irrelevant to the classification task (=22 = x| %2
HO|H 7} H& £F271)5tH, 24 XA X[X| 2 0= HOo[H=Z

S52 8 B2, Yol B3 M(sM)DHs o| Ch2 | =)
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CtS Hlw X7t 2ot 492 1Y HE

e Many algorithms employ the following greedy strategy:
— Initial model: M

— Alternative model: M’ =M U v,

where y is a component to be added to the model
(e.g., a test condition of a decision tree)

— Keep M’ if improvement, A(M,M’) > «.
| B MOIM, =7t 3(y)E S3lf 0|50] YW, F=7F nEfAtetol &£
=2

o \d

=
A
T

@

<

el TR E S AME R

m[o
Mot

Often times, v is chosen from a set of alternative
components, " = {y4, y2, ..., Y}

Of U Chot =7t 2 y AFRHO] EXHE 5= U
¢ If many alternatives are available, one may inadvertently

add irrelevant components to the model, resulting in
model overfitting

Oro A
—

o
=

O| CHRHO| A= 8%, S =AEA 2EXE dEis 2 &+ UL
-

_I

H, O|= overfitting=



@ Z2(Generalization error)0] Cigt ==

£ 2|0iet S0{0f ¥ 31X 2, L2 BHSH< waining setdt
(oD 2, Atst @R ZHHH o2 FHHN 0|2 F0{of 2
%) 0|80}

F-.-
lot

:o%‘

e
1. Re-substitution estimate (XM X| 2t 3=

Ol rE
of ot

r to

P
F

=
TT
O
A

I

— 2ATYO| MM HO|HE & L&D 7HEEY, 23 7 (F,
X2t @ Fy= Litst @ 70 Lot =EX|E MSdt=0H o088 ==
S?,U:|-_T|_ 7|-7(‘|o|-

— Ol0f, JAHEE Eg| HE EoeE2 Ched| /Y H2 28 2FES
MOl RES 1 HZRUE MEE S Ul B3 o5k £ Utts

7Ol Tk 2=80] of A !

2. Model Complexity(2 2 S%+E) 12{5}7|

DO S E =5 overfitting = 2d 7tsd =014, 0[0f, 222
SYHEE 18{5}0f gitsl L7 S E@OF =

3. Pessimistic Estimate(H| 2% 25 F=7H)

gttot QR E SULLFA BE S0 TSt penaltyZtl| 222 &(&

leaf nodeOf| penalty 4f =7tgh
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43} @ B (Generalization error)0f Cigt =3

2 MEZ0

o
=

2 2[(Minimum Description Length Principle)

. 4.

H 7 (statistical correction) 2 2

HA) =85t

—

-
o

Xl
H

dhof 2

o

|

N

ofl K- ol /T

Statistical Bounds(& A&

Using Validation Set(

5.
6.
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67



Resubstitution Estimate

e Using training error as an optimistic estimate of
generalization error

e(T,) = 4/24
e(Tg) = 6/24
Decision Tree, T Decision Tree, T,
CEEEE 2258
e
TL TR
1- [ ma"z(i' 3) 4 maxz(f’ Ly ma"z(ﬁ'o) + ma"z(i’ 2) L (max(S, 2) , max(1,4) , max(3,0) , max(3, 5))
+ max(3, 0) + max(3, 1) + max(0, 5)] 24 24 1 24 24
24 24 24 T
1
6
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Incorporating Model Complexity(2& S%Hd 13)

e Rationale: Occam’s Razor

— Given two models of similar generalization
errors, one should prefer the simpler model
over the more complex model

— A complex model has a greater chance of
being fitted accidentally by errors in data

— Therefore, one should include model
complexity when evaluating a model
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Occam’s Razor (L] HE

o Ho|: 2 Atz 922 Zhe Sofo| @aElo| Y, O
Chaot REO| 230t DE R M EIC
— (Given two models of similar generalization errors, one should

prefer the simpler model over the more complex model)

23S DEO|AE HO|E 0| EXSHE 220 8] M)
JHs 0| o Hx| 7| 2
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Pessimistic Estimate

e(T,) = 4/24

e(Tg) = 6/24

Decision Tree, T, Decision Tree, T

e'(T)) = (4 +7 x 1)/24 = 0.458 (77l |leaf
noded| penaltyd} Z+ZF"1”)

e'(Tg) = (6 + 4 x 1)/24 = 0.417 (47} leaf
noded| penaltyd} Z+ZF«1”)
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Pessimistic Estimate

o YIS QRE O RO} BH X0 [i3 penalty?to] B2 E(Z leaf
nodeOf| penalty 2} F71&h

e Given a decision tree node t
— n(t): number of training records classified by t
— e(t): misclassification error of node t
— Training error of tree T:

> le(t) + Q)]

R _e(T)+Q(T)

2.N() N

+ (: Is the cost of adding a node

+ N: total number of training records

12



Minimum Description Length (X|& M= Z0|)

e halting growth of the tree when the encoding is minimized

e C.f) Occam’s razor

— Most data mining tasks can be described as creating a model for
the data

— E.g.) the K-means models the data as a set of centroids.

— Occam’s razor: All other things being equal, the simplest model is
the best.
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Minimum Description Length (X|& M= Z0|)

e Then, what is a simple model?

e Minimum Description Length Principle: Every
model provides a encoding of our data. The
model that gives the shortest encoding (best
compression) of the data is the best.

— MDL restricts the family of models considered

— Encoding cost: cost of party A to transmit to
party B the data.
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Minimum Description Length (X|& M= Z0|)

e The description length consists of two terms
— The cost of describing the model (model cost)

— The cost of describing the data given the
model (data cost).

e There Is a tradeoff between the two costs

— Very complex models describe the data in a
lot of detail but are expensive to describe

— Very simple models are cheap to describe but
require a lot of work to describe the data
given the model
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Minimum Description Length (X|& M= Z0|)

e Regression: find the polynomial for describing
the data

— Complexity of the model vs. Goodness of fit

/

High model cost Low model cost
Low data cost Low data cost

Low model cost
High data cost

MDL avoids overfitting automatically!

Source: Grnwald et al. (2005) Advances in Minimum Desctiption Length: Theoty and Applications.



Estimating Statistical Bounds

- YHIZl @ 7= 22U RO gt SAHIX H¥(statistical correction)2 2
XX{El A Ol2
T o2 T A0
a: 22| =F(confidence level)
22, e(l-e)  z7, Zo ) BE M7} BEREE BESIE
CToN Tl Ty TNz NeB Tl s ASElE 2 HAse S
e'(N,e, @) = 5
1+ Z0{/2
N
+' 5 Before splitting: e =2/7, e'(7,2/7,0.25) = 0.503
-1 2
A e'(T) =7 x 0.503 = 3.521
+ 3 4+ 2 After splitting:
-1 -1

e(T,) = 1/4, e'(4,1/4,0.25) = 0.537

e(Tg) = 1/3, €'(3, 1/3, 0.25) = 0.650

e’ (T) = 4 x 0.537 + 3 x 0.650 = 4.098



OEH
L}

s
e Divide training data into two parts:
— Training set:
+ use for model building
— Validation set:

+ use for estimating generalization error
+ Note: validation set is not the same as test set

e Drawback:

— Less data available for training

78



Notes on Overfitting

e Overfitting O|AtZ E2|S 2T}
S PEL AIE K
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How to Address Overfitting

e Pre-Pruning,Early Stopping Rule (AHH 7FX| X[ 7], = 7| F K| &)
O

HH 28 o0 2HES P | = 25 43
XMo| E2| At QD=2 M|

UBHE Ol YX| E7U:

ot
m
i
N
E
i
)
>
N

+ Stop if all instances belong to the same class
+ Stop if all the attribute values are the same
Ol S gAc BX = ALE:
+ Stop if number of instances is less than some user-specified threshold

+ Stop if class distribution of instances are independent of the available
features (e.g., using y 2 test)

+ Stop if expanding the current node does not improve impurity
measures (e.g., Gini or information gain).

0| gtAl(More restrictive condition)2| 22 =& §|O|E{0ff X|LtX|A
A Helio= 5 subtree?t é;',**" E|X| SEE SICH= A
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How to Address Overfitting...

e Post-pruning(AE 7+X| X[ 7|)

OINZAN Ef|= HE30= X[ A7 2 HEtst

7 ChZ, 2t89| Atet E2| & A (bottom-up)2 2 L0 7t=
EX| K| 7| XS f=slict
o (1) DHOE trlmmlng _,_O1| 28t @ 2 (generalization error)7F ZH M EICHH ) S| S
sub-treeS leaf nodeZ WM&

* (2) sub-tree®| Ct= S A (majority class)?t 8HH classE #= tHY leaf
nodeZ CHA|E!

50 28
el Eolg oo
JIRIX|7| S SB.2, AR ZHRIK|7| 8L B L2 ATHE THR|=

7:| re140) K=J
e R=PDIN=

SIX|TH 2|2 2HH3| HRAIZ| 7| 8l RRE S A0
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Example of Post-Pruning

. TYrEQl AL
Training error: 1-max(20,10)/30 = 1-20/30 = 10/30
Pessimistic error = (10 + '=E 17} * 0.5)/30 = 10.5/30

Class =Yes | 20

e 47§ E subset® AL
Class = No 10 1-max(8,4)/30 — max(3,4)/30 — max(4,1)/30 — max(5,1)/30 = 9/30
= — 10/30 Pessimistic error = (9 + == = 47 * 0.5)/30 = 11/30
ror = > Subset?| error?t tLt2| L= E 9| error2 Lt - Pruning &

Pruned !

Class=Yes | 8 || Class = Yes /,;jzgags: =Yes | 4 ||Class=Yes | 5
Class=No | 4 || class=N0 | 4 || class=ne._| 1 || class = No
= =

N 82 ~,



Handling Missing Attribute Values

e Missing values affect decision tree construction in
three different ways:

— Affects how impurity measures are computed

— Affects how to distribute instance with missing
value to child nodes

— Affects how a test instance with missing value
IS classified
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Computing Impurity Measure

Marital Taxable

T ; Before Splitting:
: Entropy(Parent)
1 |Yes  |Single 125K No =-0.310g(0.3)-(0.7)log(0.7) = 0.8813
2 No Married 100K No Class | Class
3 |No Single 70K No =Yes | = No
4 |Yes Married 120K No HomeOwner=Yes 0 3
5 No Divorced |95K Yes HomeOwner =NO 2 4
6 No Married 60K No HomeOwner =7 1 0
7 Yes Divorced |[220K No _
_ Split on Home owner:
8 No Single 85K Yes
9 |No Married | 75K No Entropy(Home=Yes) = 0
10 |? Single 90K Yes Entropy(Home=No)
\ =-(2/6)log(2/6) — (4/6)log(4/6) = 0.9183
o Entropy(Children)
Missin
J =0.3(0) +0.6 (0.9183) = 0.551
value

Gain = (0.8813 — 0.551) = 0.3303
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Computing Impurity Measure

Before Splitting:
Entropy(Parent)
-0.310g(0.3)-(0.7)log(0.7) = 0.8813

Class | Class

=Yes | = No
HomeOwner=Yes 0 3
HomeOwner =NO 2 4
HomeOwner =? 1 0

Split on Home owner:

3

7

Entropy(Home=Yes)

ClLyY C2,N

CLY C2,N

P(C1)=0/3, P(C2)=3/3
Entropy=-(0)log2(0) — (1)log2(1) =0

Entropy(Home=No)
P(C1)=2/6, P(C2)=4/6
Entropy=-(2/6)log2(2/6) — (4/6)log2(4/6)= 0.918

Entropy(Children)
=0.3(0) + 0.6 (0.9183) = 0.551

Gain = (0.8813 — 0.551) = 0.3303




Distribute Instances

Home
owner

Marital
Status

Taxable
Income

Defaulted
Borrower

Tid |Home Marital Taxable Defaulted
owner Status Income e
1 Yes Single 125K No
2 No Married 100K No
3 No Single 70K No
4 Yes Married 120K No
5 No Divorced |95K Yes
6 No Married 60K No
7 Yes Divorced |220K No
8 No Single 85K Yes
9 No Married 75K No
10 |7 Single 90K Yes
Home Owner
ny wo
Class=Yes 0 Cheat=Yes
Class=No 3 Cheat=No

Home Owner

Y(iy

wo

Class=Yes

0O+ 3/9

Class=Yes

2+ 6/9

Class=No

Class=No

Probability that Home=Yes is 3/9

Probability that Home=No is 6/9

Assign record to the left child with
weight = 3/9 and to the right child
with weight = 6/9
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Classify Instances

New record: Married | Single | Divorced | Total
Tid Home  Marital Taxable

Owner Status Income |Class Class=No 3 1 0 4

Class=Yes 6/9 1 1 2.67

2 Total QESD (; Q 6.67
Home

. .
un?® .
"""""

NO MarSt | e e
Single, —— N, N |

Divorced /<" Probability that Marital Status

= Married is 3.67/6.67
TaxInc NO
< 80|.</ \> 80K Pro_bability_ that Mar_ital Status

={Single,Divorced} is 3/6.67

NO YES
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Other Issues

e Data Fragmentation
e Search Strategy
e EXpressiveness
e Tree Replication
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Data Fragmentation

e Data fragmentation problem:

— As tree is developed, the questions are selected on
the basis of less and less data

— Number of records(data) gets smaller as you traverse
down the tree

e Number of records(data) at the leaf nodes could be too
small to make any statistically significant decision

e You can introduce a lower bound on the number of items
per leaf node In stopping criterion
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Search Strategy

e Finding an optimal decision tree is NP-hard

e The algorithm presented so far uses a greedy,
top-down, recursive partitioning strategy to
Induce a reasonable solution

e Other strategies?
— Bottom-up
— Bi-directional

90



Expressiveness (1/2)

e Decision tree provides expressive representation for
learning discrete-valued function

— But they do not generalize well to certain types of

Boolean functions (ex) XOR or parity functions) -
detot REEZ 25H A complete tree”tX| BF=0{0F 2t

¢ Example: parity function:.

— Class = 1 if there is an even number of Boolean attributes with truth
value = True

— Class = 0 if there is an odd number of Boolean attributes with truth
value = True

+ For accurate modeling, must have a complete tree

e Not expressive enough for modeling continuous variables

— Particularly when test condition involves only a single
attribute at-a-time
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Expressiveness (2/2)

e Decision trees can express any function of the input
attributes (eg., for Boolean functions, truth tables)

A
A B AxorB
F F F
F 7T
T F T
e & F

e Trivially, there is a consistent decision tree for any training

set with one path to leaf for each example but it probably

won't generalize to new examples

%, 0{® training setO|2tE 0f7]0]l YX|3}= DTE EXE >

61Xx|at, 22|= DT7F complete DT(2VHX| A&st= ZHHLHRLE compact DTS MEst= A &
92
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ODbligue Decision Trees (Oblique splits)

0.9

0.5

0.7

0.k

0.5

0.4

0.3

0.2

0.1

NZ

o n

[ =

A % Zr3} orthogonal 5HX|
oblique(ZI20 %) split” = 7}s&
ore expressivedtil compacte DTE

L5l

o

» Test condition may involve multiple attributes

« More expressive representation

* Finding optimal test condition is computationally expensive
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ODbligue Decision Trees (Oblique splits)

- DTHIME oblique split0] 75 8HX| 2k X|$to| S
- Of2j ojle] AR += DTECL} Linear Regression AFH20| Ef 20|38t 42 20|11 U2

¥ . X<gl?
. ¢ TN
. ot -
o -1 D Y<fil ?
- [
_ i a
decision - e AN
tree . o 9, © o X <ol ?
eed .
QO a
[ ] i
l||||-|I /
i g O -
—
Y $ .
& . a
™ s?
L
s .~ U
linear o« s 0
) . g aX+pY=<a?
regression <o
g - 'l-;.- . 0 ‘{f' x\
s OO Q o .
--. D =-
X
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Decision Boundary (1/2)

Test ZZ40]| 2} Decision Boundary e &

T
|
09 | © : \4 -
|
| X <0.437?
08 | | v -
| —~ -
07 o l i Yes No
|
0.6 ' . h
S I
(@)
> 05t :
|
|
|
|

04l W - - )
O

02 v

0.1

o
o n
o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

 Border line between two neighboring regions of different classes is
known as decision boundary

* Decision boundary is parallel to axes because test condition involves

a single attribute at-a-time o5



Decision Boundary (2/2)

Test ZZ40]| 2} Decision Boundary e &
Depth 48 7}X|&= DTL} 0|0f 2|8l 2+=01%l Decision Boundary ARl

y

Cc
|/rl-ﬂd
y<b ,tl‘\ a
i ) y 2
b
2
y<a

3 4 C

96



Tree Replication

. Ol 2 &M subtree 7t DTOM K2 H SH & SEHZ L=
e O|=DTE ZWQOo|MOZ EXIGHA BHED S|MHE O A &t

DT nodel| single & HIAE =22 IIS0{X[E = O| 2Tt
AbS} HEAY Tt

OIQ
YT =]

I
I
l
|
|
|
|
\

« Same subtree appears in multiple branches
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Model Evaluation

e Metrics for Performance Evaluation
— How to evaluate the performance of a model?

e Methods for Performance Evaluation
— How to obtain reliable estimates?

e Methods for Model Comparison

— How to compare the relative performance
among competing models?
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Metrics for Performance Evaluation

e Focus on the predictive capability of a model

— Rather than how fast it takes to classify or
build models, scalability, etc.

e Confusion Matrix:

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes |Class=No
Class=Yes a b
Class=No d

99

a: TP (true positive)

b: FN (false negative)

d: TN (true negative)



Metrics for Performance Evaluation...

PREDICTED CLASS

ACTUAL
CLASS

Class=Yes

Class=No

Class=Yes

a
(TP)

b
(FN)

Class=No

C
(FP)

d
(TN)

e Most widely-used metric:

a+d TP+TN

Accuracy = =
a+b+c+d TP+TN+FP+FN
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Limitation of Accuracy

e Consider a 2-class problem
— Number of Class 0 examples = 9990
— Number of Class 1 examples = 10

e |If model predicts everything to be class 0,
accuracy iIs 9990/10000 = 99.9 %

— Accuracy Is misleading because model does
not detect any class 1 example
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Cost Matrix

PREDICTED CLASS

ACTUAL
CLASS

C(i|)) Class=Yes | Class=No
Class=Yes | C(Yes|Yes) | C(No|Yes)
Class=No C(Yes|No) | C(No|No)

C(ilj): Class jE class iZ 2 0|58t I AE
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C(i[j): Cost of misclassifying class | example as c



Cost vs Accuracy

Count PREDICTED CLASS
Class=Yes | Class=No
Class=Yes a b
ACTUAL
CLASS | Class=No C d
Cost PREDICTED CLASS
Class=Yes | Class=No
Class=Yes D g
ACTUAL
CLASS | Class=No g D

Accuracy is proportional to cost if
1. C(Yes|No)=C(No|Yes) = q
2. C(Yes|Yes)=C(No|No) = p

N=a+b+c+d

Accuracy = (a + d)/N

Cost=p(a+d)+q(b+c)
=p(a+d)+q(N-a-d)
=gN-(g-p)(a+d)
=N [g — (g-p) x Accuracy]



Computing Cost of Classification

Cost | PREDICTED CLASS
Matrix
Calp | + -
ACTUAL
+ -
CLASS 1 | 100
- 1 0
Model | PREDICTED CLASS Model | PREDICTED CLASS
M, M,
+ - + -
ACTUAL ACTUAL
+ +
CLASS 150 | 40 L ASS 250 | 45
- 60 | 250 - 5 | 200
Accuracy = 80% Accuracy = 90%

Cost = 3910 Cost = 4255
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Cost-Sensitive Measures

PREDICTED CLASS
. tp Class=Yes | Class=No
Precision = ———

tp + fp Class=Yes True False
tp ACTUAL Positive Negative

Recall = ——— CLASS | class=No False True
tp + fn Positive | Negative

Precision(3Z2 k) 2 positive predictive value:

EtX|SUCt &L= A(positive)0] A %= ELY

Recall(®| 21 &) S 2 Z E(sensitivity)
AN SoAM M2 o] & ot = 32

F-Measure
HUCQ} MHEO| X3t B2

0f)) BHoF 10,000742] THZ! B0l AR o4 TS| HIE T} OHS B HS.
Precision(® 2 E)= EHXIRCED FESH H(positive) SO 17 Herst 32

Recall(F1312)2 AX| HEF0|A 0|S Hi= &otf= 2L,

of0f 2ref, =X &g =4 LjZl0| 2 M2 87 2K S35 HOtLj= A0

| |
SactH, & =2 Mol g), Fd JA/UCE 2t GEE F2(F, fp7] BOHE E9),
Meis2 FZO0MKX|T, 8= Bojd. 0[0f, O =7te| ==2pEw 0] S 20l & (F-

Measure) 105



Model Evaluation

e Metrics for Performance Evaluation
— How to evaluate the performance of a model?

e Methods for Performance Evaluation
— A& HIO|HE AtESH 5 H7t

— How to obtain reliable estimates?

e Methods for Model Comparison

— How to compare the relative performance
among competing models?
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Methods for Performance Evaluation

o A H|O|HZ AtESH 95 E7t

e How to obtain a reliable estimate of
performance?

e Performance of a model may depend on other
factors besides the learning algorithm:

— Class distribution
— Cost of misclassification
— Size of training and test sets
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Methods of Estimation (1/74: 287| ds

e Holdout (0f|H| 7|

=)

- 01|) = O|O|E(2/3), Al HIO|H(1/3)2 ++d
Z A| modelO| EAI8| %!
=3 OOl et Al H[o|H Mt Mo o|&- Y

e Random subsampling (B E MEME2)

— Holdout(%{|H| 7|

s2 oolg &

#)2 DYl M5 BAS s oy
Ol ), Al I O|Ef 7t P92 ME S

]
Total length/number of available data

H E=ot=

>

|

-

1* Experiment

Test Data

-

L1 IF

-
-

w

2" Expe

riment

3¢ Experiment

A



Methods of Estimation (2/74: =

M
o

77

S 87t

H}
o

=)

e Cross validation (X} A43%)

— Partition data into k disjoint subsets

— k-fold: train on k-1 partitions, test on the remaining one

— Leave-one-out;: k=n

— Of) Hlo|HE sLot A7|= 574 = Liw =, oHHOf| H=t
AESHY, A|dE. & 5% A7t
DFOF | O B
O|&
fold #1 fold #2 fold #3 fold #4 fold #5
9 - Training Training Training Training
E ') Training Test [ Training Training Training
 — m . -
o w® 9 Training Training - Training Training
A
8 9 Training Training Training - Training
9 Training Training Training Training Test
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=
=22 A

Prediction Statistics

OfLtol G O] & 2t

o-|.9. 27|'|E L'I-_l_l_ 7c:>|
W X5 (two-fold cross valldatlon)ol =l gl



Methods of Estimation (3/4: 2&/7| A5 ™7} @)

e Stratified sampling (53} £&)
— HOIHE& O 7|=2 2 1§23 Bt=(Strata)
— 2} StrataOl| A| subsampleO| MEHE|0] A 0| AtE E

List of Clients

Caucasians African-§merican

L Ll
s L E L
4 L 4 L
4 L 4 L
4 L 4 L
1 . d .
s L s Al
. ' ' '
s 1 L L s s L L
s s L L - 1 L L
r LY a r LY
- L] - 0
1 e
Lh ] [ L]

Hispanic-Amencan

Randemsibsamiples RN
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Methods of Estimation (4/4: 2&7| A5 "7}

e Bootstrap (FE 2EH)

— Sampling with replacement (0| X 0| AtE =l G| O] E{ 7}

CrAl BH2tE[ B2 CHA| S 3 &0 AFEE
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Model Evaluation

e Metrics for Performance Evaluation
— How to evaluate the performance of a model?

e Methods for Performance Evaluation
— How to obtain reliable estimates?

e Methods for Model Comparison

— How to compare the relative performance
among competing models?
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Learning Curve (1/2)

Accuracy
m o [ny] | | 20 ] ] iu]
7 ] m ] L’ ] m ] m
T T T T T T

iy}
=
T

Fen
m

e Learning curve shows
how accuracy changes

| R T W ----- 4 with varying sample size
I - { e Requires a sampling

schedule for creating
learning curve:

e Arithmetic sampling
(Langley, et al)

/ I e Geometric sampling
‘ (Provost et al)

Effect of small sample size:

P - Bias in the estimate

10° 10 10° . .
Sample Size - Variance of estimate

—
=
—n
=
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Learning Curve (2/2)

e Arithmetic sampling
- M= A7ttt tts SAC 2 HAIE
— Ol: arithmetic sampling with the following equation: Si = SO + | x C
— 07| M, S0 is the initial sample size and C is a constant.

- S0,S0+C,S0+2C,S0+3C..., 2t%fs0=1,000 0|11 C =100 O|2}H, S1 =
1,100, S2 = 1,200, ... 0| =

e Geometric sampling

— Sample size is increased geometrically so that sample sizes are in
geometrical progression

— Of]: Si = SO x CAl
- 0f: s0, so-C, so-c~2, S0-C"3
— S0=1,0000]2 c=20|2}H, S1=2,000, S2 = 4,000, S3=8,000, ...
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ROC (Receiver Operating Characteristic)

e Developed in 1950s for signal detection theory to
analyze noisy signals

— Characterize the trade-off between positive
hits and false alarms

e ROC curve plots TP (on the y-axis) against FP
(on the x-axis)

e Performance of each classifier represented as a
point on the ROC curve

— changing the threshold of algorithm, sample
distribution or cost matrix changes the location
of the point
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ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)

- any points located at x >t is classified as positive

1

0.016 : :
7 |
aoal / | | 09t
! ; .
Negative ' - Positive aal
oozt Clags - Class -
001k “. : | 07tk
i
0.008 ] i o 06
|'\ =
0.006 | B _ B 05
| 5
0.004 b | 1\ - - 0.4
" ‘0
*
n.onz | / I " . § "."D.a
|:| -"F/; 1 | 1 \\F-H- 1 0"‘ |:|2_
20 18 10 5 04 5 10 15 ’.'in '
o 01
*
At threshold t:
* 1 1 1 1 1 1 1 1 1
O 01 0z 03 04 05 05 07 08 09
TP=0.5, FN=0.5, FP=0.12, FN=0.88 False Positive
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Using ROC for Model Comparison

True Fositive Rate
o 2 o o o 2 9o o @ O
—_ g L] =N m [y et o0 L] —

=

/ -
M, h -
: e
! e
/ e \
-
T AUC =05 9 A=
s Z|5te| 45
;o
o

1 1 |
0 0.1 oz 0.3 0.4 04 06 07 08 049
Falze Positive Rate
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e No model consistently
outperform the other

e M, Is better for
small FPR

e M, Is better for
large FPR

e Area Under the ROC
curve (AUC)

e Ideal:
=Area=1

e Random guess:
=Area = 0.5



ROC Curve

(TP,FP):

e (0,0): declare everything
to be negative class

e (1,1): declare everything
to be positive class

e (1,0): ideal

e Diagonal line:
— Random guessing

— Below diagonal line:

# prediction is opposite of
the true class

1

09+

0.8+

0.7+

06+

True Positive
= =
= m

o
(]
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03 04 os 08 07 s 09
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How to Construct an ROC curve

Instance

P(+|A)

True Class

0.95

+

0.93

+

0.87

0.85

0.85

0.85

0.76

0.53

OCIOO|IN|O|O | WIN|PF

0.43

=
o

0.25

» Use classifier that produces
posterior probability for each
test instance P(+|A)

« Sort the instances according
to P(+|A) in decreasing order

* Apply threshold at each
unique value of P(+|A)

e Count the number of TP, FP,
TN, FN at each threshold

- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)
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How to construct an ROC curve

- RN ENEN
TP 5 4 4 3 3 3 3 2 2 1 0

FP 5 5 4 4 3 2 1 1 0 0 0
TN 0 0 1 1 2 3 4 4 5 5 5
FN 0 1 1 2 2 2 2 3 3 4 5
—| TPR 1 0.8 0.8 0.6 0.6 0.6 0.6 0.4 0.4 0.2 0
— | FPR 1 1 0.8 0.8 0.6 0.4 0.2 0.2 0 0 0
1 T T T T T T T T T
0D9r- B
08

07F i

06 . > .

ROC Curve: .6l ]

0.4 i

03F -

02+ B

01F .
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Test of Significance (#2|d HAE

o LIO[E A V[0f et =7he| =2&/7| 220X

(=) oA o
e == 907t Ele vk US

e Given two models:
— Model M1: accuracy = 85%, tested on 30 instances
— Model M2: accuracy = 75%, tested on 5000 instances

e Can we say M1 is better than M2?
— M1O| M2ELCH O =2 =S 4X|0H O &2 Al
ol CHoll Al El. > m1o| =t E oLt Azl

= QL}?
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Confidence Interval for Accuracy

e Prediction can be regarded as a Bernoulli trial

— A Bernoulli trial has 2 possible outcomes

— Possible outcomes for prediction: correct or wrong

— Collection of Bernoulli trials has a Binomial distribution:
¢ X ~Bin(N, p)  x: number of correct predictions

¢ e.g. Toss a fair coin 50 times, how many heads would turn up?
Expected number of heads = Nxp =50 x 0.5 =25

e Glven x (# of correct predictions) and N (total # of
test instances) > A &A™ H2 L acc=x/N

Can we predict p (true accuracy of model)?
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Confidence Interval for Accuracy

Area=1-qa

e For large test sets (N > 30), /

— acc has a normal distribution
with mean p and variance

pP(1-p)/N
acc—p
P(Za/z < < Zl—a/Z) |5
Jp@-p)/N
— 1_ o Z0L/2 Zl- a/2

e Confidence Interval for p:

2xNxacc+Z’ +./Z° +4xNxacc—4xN xacc’

b= 2(N +Z° )
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Confidence Interval for Accuracy

e Consider a model that produces an accuracy of

80% when evaluated on 100 test instances:

— N=100, acc =0.8
— Let 1-a = 0.95 (95% confidence)

— From probability table, Z_,=1.96

N

50

100

500

1000

5000\

p(lower)

0.670

0.711

0.763

0.774

0.789

p(upper)

0.888

0.866

0.833

0.824

0.811
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1-a

0.99

2.58

0.98

2.33

0.95

1.96

0.90

1.65




Comparing Performance of 2 Models

e Given two models, say M1 and M2, which Is
better?
— M1 is tested on D1 (size=n1l), found error rate = e,
— M2 is tested on D2 (size=n2), found error rate = e,
— Assume D1 and D2 are independent
— If n1 and n2 are sufficiently large, then

€~ N(ﬂugl)
€~ N(ﬂzigz)
e(l-e)

— Approximate: O, = -
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Comparing Performance of 2 Models

e To test If performance difference Is statistically
significant;: d =el —e2
— d ~ N(d,c;) where d, is the true difference

— Since D1 and D2 are independent, their variance
adds up:

c'=0+0 =26 +0,
_el(1-el) N e2(1-e2)
nl n2

— At (1-a) confidence level, dt =d+Z o

al? t

126



An lllustrative Example

e Given: M1: n1 =30,el1 =0.15
M2: n2 = 5000, e2 =0.25

ed=|e2-el|=0.1 (2-sided test)

P 0.15(1-0.15) N 0.25(1-0.25)
d 30 5000

e At 95% confidence level, Z_,=1.96

=0.0043

d =0.100£1.96x+/0.0043 = 0.100+0.128

=> Interval contains 0 => difference may not be
statistically significant
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Comparing Performance of 2 Algorithms

e Each learning algorithm may produce k models:
— L1 may produce M11 , M12, ..., M1k
— L2 may produce M21 , M22, ..., M2k
e If models are generated on the same test sets
D1,D2, ..., Dk (e.g., via cross-validation)
— For each set: compute d, = e;; — e,
— d; has mean d, and variance o,

— Estimate: JZk;(dj _a)z

N2

T k(k=1)
d=d+t 6

l-a k-1 t
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