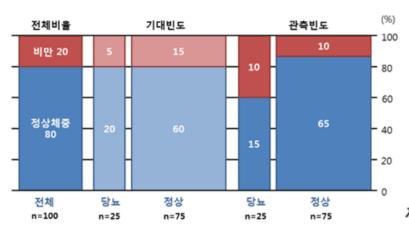
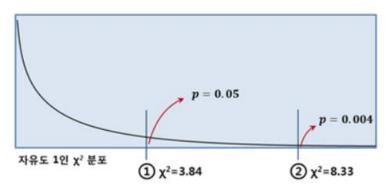


- 귀무가설 : 두 변수는 연관성이 없다

- 대립가설 : 두 변수는 연관성이 있다.

 두 변수 사이의 연관성이 전혀 없다는 귀무가설 하에서 검정통계량의 값 (카이제곱값) 이 클수록 이러한 현상이 관찰될 가능성(p-value)는 적어지게 된다.





$$\chi^2 = \sum rac{(관측빈도-기대빈도)^2}{기대빈도} = rac{(+5)^2}{5} + rac{(-5)^2}{20} + rac{(-5)^2}{15} + rac{(+5)^2}{60} = 8.33$$

- 자유도 1인 카이제곱 분포에서 카이제곱값 3.84인 현상이 관찰될 가능성이 5%이며(p value= 0.05)
 카이제곱값이 8.33인 현상이 관찰될 확률은 0.4%이다. (p-value=0.004)
- 따라서 귀무가설을 기각하고 당뇨와 비만 사이에 연관성이 있다는 대립가설을 채택할 수 있다.

Five Basic Test?

Let $s = s_0, s_1, s_2, \ldots, s_{n-1}$ be a binary sequence of length n. This subsection presents five statistical tests that are commonly used for determining whether the binary sequence s possesses some specific characteristics that a truly random sequence would be likely to exhibit. It is emphasized again that the outcome of each test is not definite, but rather probabilistic. If a sequence passes all five tests, there is no guarantee that it was indeed produced by a random bit generator (cf. Example 5.4).

- 무작위 비트 생성기(random number generator) 의 성질을 조사하기 위한 테스트를 수행.
- 생성된 표본 출력 수열(Sample out sequence)에 몇 가지 테스트를 적용하여 이루어진다.
- 각각의 통계적 테스트는 무작위 수열이 가져야 하는 속성을 얼마나 만족하는지를
 결정적이기보다 확률로 나타낸다.

The purpose of this test is to determine whether the number of 0's and 1's in s are approximately the same, as would be expected for a random sequence. Let n_0 , n_1 denote the number of 0's and 1's in s, respectively. The statistic used is

$$X_1 = \frac{(n_0 - n_1)^2}{n} \tag{5.1}$$

which approximately follows a χ^2 distribution with 1 degree of freedom if $n \geq 10$.

- 0과 1의 개수가 같다는 가정에 근거한 테스트.
- 0과 1의 개수를 각각 이라고 하면, n>=10인 경우

$$X_1 = \frac{(n_0 - n_1)^2}{n}$$
 은 자유도(degree of freedom)가 1인 분포를 따른다.

- 이 때 $n_0 + n_1 = n$ 을 만족한다.

The purpose of this test is to determine whether the number of occurrences of 00, 01, 10, and 11 as subsequences of s are approximately the same, as would be expected for a random sequence. Let n_0 , n_1 denote the number of 0's and 1's in s, respectively, and let n_{00} , n_{01} , n_{10} , n_{11} denote the number of occurrences of 00, 01, 10, 11 in s, respectively. Note that $n_{00} + n_{01} + n_{10} + n_{11} = (n-1)$ since the subsequences are allowed to overlap. The statistic used is

$$X_2 = \frac{4}{n-1} \left(n_{00}^2 + n_{01}^2 + n_{10}^2 + n_{11}^2 \right) - \frac{2}{n} \left(n_0^2 + n_1^2 \right) + 1 \tag{5.2}$$

which approximately follows a χ^2 distribution with 2 degrees of freedom if $n \geq 21$.

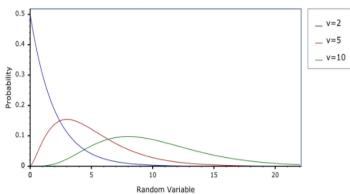
- 연속된 2비트 00, 01, 10, 11의 개수가 같다는 가정에 근거한 테스트.
- 00, 01, 10, 11의 개수를 각각 이라고 하면, n_{00} , n_{01} , n_{10} , n_{11} 인 경우

확률변수 X는
$$X_2 = \frac{4}{n-1} \left(n_{00}^2 + n_{01}^2 + n_{10}^2 + n_{11}^2 \right) - \frac{2}{n} \left(n_0^2 + n_1^2 \right) + 1$$

로 정의 되고, 이 X는 자유도 2인 카이 제곱 분포를 따른다.

(이 때
$$n_{00} + n_{01} + n_{10} + n_{11} = n - 1$$
, $n_0 + n_1 = n$ 을 만족함.)

Chi Squared Distribution PDF



Poker test

Let m be a positive integer such that $\lfloor \frac{n}{m} \rfloor \geq 5 \cdot (2^m)$, and let $k = \lfloor \frac{n}{m} \rfloor$. Divide the sequence s into k non-overlapping parts each of length m, and let n_i be the number of occurrences of the i^{th} type of sequence of length m, $1 \leq i \leq 2^m$. The poker test determines whether the sequences of length m each appear approximately the same number of times in s, as would be expected for a random sequence. The statistic used is

$$X_3 = \frac{2^m}{k} \left(\sum_{i=1}^{2^m} n_i^2 \right) - k \tag{5.3}$$

100 111 수열 S

m bit

- 양의 정수 m이 $\lfloor \frac{n}{m} \rfloor \geq 5 \cdot (2^m)$ 을 만족하면, 양의 정수 $k = \lfloor \frac{n}{m} \rfloor$ 에 대해 수열 s를 각 m비트인 k개의 부분수열로 둘 수 있고, 각각의 부분수열 a는 m비트 수임.
- ni는 i번째 type의 sequence가 나타난 횟수

$$-$$
 이 때 $X_3 = rac{2^m}{k} \left(\sum_{i=1}^{2^m} n_i^2
ight) - k$ 는 자유도 $2^m - 1$ 의 카이제곱 분포를 따른다.

Poker test

$$X_3 = \frac{2^m}{k} \left(\sum_{i=1}^{2^m} n_i^2 \right) - k \tag{5.3}$$

$$\chi^2 = \Sigma \frac{(O - E)^2}{E}$$

O: Observed Frequency(실제 빈도)

(두 변수가 독립, 즉 연관성 없는 경우) E: Expecetd Frequency(기대 빈도)

표 15.2 간호 학생의 교실에서 세 인종 집단의 관찰빈도와 기대빈도

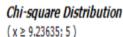
빈도	백인(UK와 EU)	캐리비안인	인도계인	계
관찰	34	62	28	124
기대	59.5	41	23.5	124

$$\chi^2 = \Sigma \frac{(O-E)^2}{E} = \frac{(34-59.5)^2}{59.5} + \frac{(62-41)^2}{41} + \frac{(28-23.5)^2}{23.5}$$

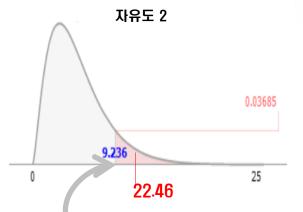
$$= \frac{(-25.5)^2}{59.5} + \frac{(21)^2}{41} + \frac{(4.5)^2}{23.5}$$

$$= \frac{650.25}{59.5} + \frac{441}{41} + \frac{20.25}{23.5}$$

$$= 10.9 + 10.7 + 0.86 = 22.46$$
하에서의 카이지



0.10000 0.90000



계산한 카이제곱 값이 특정 자유도와 p값 (ex.p=0.05) 하에서의 카이제곱 값(9.236)보다 크다->귀무가설을 가설을 만족한다-〉유의수준 0.05 하에서 연관성이 있 다.

Example (basic statistical tests) Consider the (non-random) sequence s of length n = 160 obtained by replicating the following sequence four times:

(poker test) Here m = 3 and k = 53. The blocks 000, 001, 010, 011, 100, 101, 110, 111 appear 5, 10, 6, 4, 12, 3, 6, and 7 times, respectively, and the value of the statistic X_3 is 9.6415.

- 각각의 3bit짜리 000, 001, 011의 실제 개수를 n1, n2, ..으로 이름붙임
- $n1 = 5, n2 = 10, n3=6 \cdots$
- 각각이 등장할 확률의 기대값을 p1, p2, p3…으로 명명
- p1, p2, p3.. 즉 각각의 수열이 나타낼 확률은 동일해야 가장 random함. (3비트의 경우는 1/8)

$$X_3 \; = \; rac{2^m}{k} \left(\sum_{i=1}^{2^m} n_i^2
ight) - k$$

_ (공식 설명은 다음 페이지)

Poker test

$$X^{2} = \int_{i=1}^{8} \left(\frac{m_{i}^{2} - 2N \cdot P_{i}^{2} n_{i}^{2} + N \cdot P_{i}^{2}}{N \times P_{i}^{2}} \right)$$

$$= \int_{i=1}^{8} \left(\frac{m_{i}^{2} - 2N \cdot P_{i}^{2} n_{i}^{2} + N \cdot P_{i}^{2}}{N \times P_{i}^{2}} \right)$$

$$= \int_{i=1}^{8} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P_{i}^{2}} - 2m_{i}^{2} + N \cdot P_{i}^{2} \right)$$

$$= \sum_{i=1}^{9} \left(\frac{m_{i}^{2}}{N \cdot P$$

$$X_3 = \frac{2^m}{k} \left(\sum_{i=1}^{2^m} n_i^2 \right) - k$$

The purpose of the runs test is to determine whether the number of runs (of either zeros or ones; see Definition 5.26) of various lengths in the sequence s is as expected for a random sequence. The expected number of gaps (or blocks) of length i in a random sequence of length i is i in a random sequence of length i is i in a random sequence of length i is i in a random sequence of length i is i in a random sequence of length i in a random sequence of length i is i in a random sequence of length i in a random sequence i in a random sequence

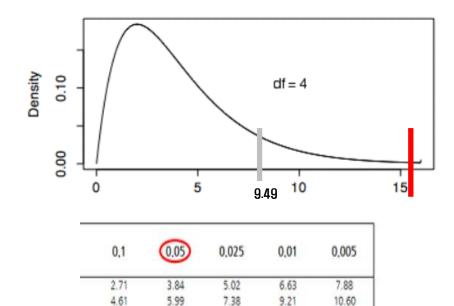
$$X_4 = \sum_{i=1}^k \frac{(B_i - e_i)^2}{e_i} + \sum_{i=1}^k \frac{(G_i - e_i)^2}{e_i}$$
 (5.4)

which approximately follows a χ^2 distribution with 2k-2 degrees of freedom.

- 0 또는 1이 연속하여 나타나는 정도가 추정치에 근접한지 확인함.
- n비트의 수열에서 0 또는 1이 i개 연속하여 나타날 확률은 $e_i = (n-i+3)/2^{i+2}$. 이다.
- ─ Block(1이 연속된 것) Gap(0이 연속된 것) 의 개수를 각각 Bi, Gi라한다.
- $-\sum_{i=1}^k \frac{(B_i-e_i)^2}{e_i}$ 은 block의 카이제곱 값. $\sum_{i=1}^k \frac{(G_i-e_i)^2}{e_i}$ 은 Gap의 카이제곱 값.
- Block의 카이제곱값과 gap의 카이제곱값을 합하여 run test를 검증한다.

example

(runs test) Here $e_1 = 20.25$, $e_2 = 10.0625$, $e_3 = 5$, and k = 3. There are 25, 4, 5 blocks of lengths 1, 2, 3, respectively, and 8, 20, 12 gaps of lengths 1, 2, 3, respectively. The value of the statistic X_4 is 31.7913.



9.35

11,14

11.34

13.28

6.25

7.78

7.81

9.49

두 변수(실제 비트열의 분포와 random한 비트열의 분포)는 연관성이 있다.

12.84

14.86

The purpose of this test is to check for correlations between the sequence s and (non-cyclic) shifted versions of it. Let d be a fixed integer, $1 \le d \le \lfloor n/2 \rfloor$. The number of bits in s not equal to their d-shifts is $A(d) = \sum_{i=0}^{n-d-1} s_i \oplus s_{i+d}$, where \oplus denotes the XOR operator. The statistic used is

$$X_5 = 2\left(A(d) - \frac{n-d}{2}\right)/\sqrt{n-d}$$
 (5.5)

which approximately follows an N(0,1) distribution if $n-d \ge 10$. Since small values of A(d) are as unexpected as large values of A(d), a two-sided test should be used.

- 일정한 간격 차이의 두 비트들 간의 관계(Si와 d만큼 shift된)를 테스트함.
- n/2 미만의 양의 정수 d에 대해 $A(d) = \sum_{i=0}^{n-d-1} s_i \oplus s_{i+d}$ 즉 Si와 Si+d 의 XOR 값은

$$-X_5 = 2\left(A(d) - \frac{n-d}{2}\right)/\sqrt{n-d}$$
은 정규분포 N(0, 1)을 따른다.

Maurer's universal statistical test

Maurer's universal statistical test

- The basic idea behind Maurer's universal statistical test is that it should not be possible to significantly compress (without loss of information) the output sequence of a random bit generator. Thus, if a sample output sequence s of a bit generator can be significantly compressed, the generator should be rejected as being defective. Instead of actually compressing the sequence s, the universal statistical test computes a quantity that is related to the length of the compressed sequence.
- 기본 아이디어는 주어진 비트 수열이 무작위라면 그 수열을 압축하였을 때 그 압축률이 너무 크지는 않을 것이라는 사실이다. 즉 어떤 수열을 압축하였을 때 큰 압축률을 보인다면 그 수열을 거부한다. 이 테스트는 실제로 주어진 수열을 압축하는 대신 압축률에 관련된 값만을 계산하므로 그 실행속도는 비교적 빠르다.
 그러나 매우 큰 비트 수열을 필요로 하기 때문에 비트생성기가 표준출력수열을 생성하는데 비교적 많은 시간이 소요된다.

Algorithm Computing the statistic X_u for Maurer's universal statistical test

INPUT: a binary sequence $s = s_0, s_1, \ldots, s_{n-1}$ of length n, and parameters L, Q, K. OUTPUT: the value of the statistic X_u for the sequence s.

- 1. Zero the table T. For j from 0 to $2^L 1$ do the following: $T[j] \leftarrow 0$.
- 2. Initialize the table T. For i from 1 to Q do the following: $T[b_i] \leftarrow i$.
- 3. $sum \leftarrow 0$.
- 4. For i from Q+1 to Q+K do the following:
 - 4.1 sum \leftarrow sum + lg $(i T[b_i])$.
 - 4.2 $T[b_i] \leftarrow i$.
- 5. $X_u \leftarrow \text{sum}/K$.
- 6. Return(X_u).
- 주어진 2진 수열 s를 Q+K개의 L비트 블록으로 분리
- T[j]는 가장 최근에 j값이 나타낸 블록의 위치
- $-A_i=i-T[b_i]$, $Q+1\leq i\leq Q+K$ 라고 하면 Ai는 bi값이 몇 블록 이전에 나타났는지를 의미

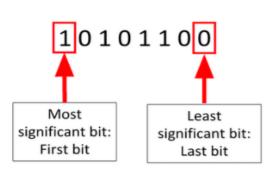
$$X_u = rac{1}{K} \sum_{i=Q+1}^{Q+K} \lg A_i$$
. 는 u, o에 대해 평균 u와 분산 σ^2 을 갖는 정규 분포를 따른다.

Cryptographically secure pseudorandom bit generation

Algorithm RSA pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence z_1, z_2, \ldots, z_l of length l is generated.

- 1. Setup. Generate two secret RSA-like primes p and q (cf. Note 8.8), and compute n=pq and $\phi=(p-1)(q-1)$. Select a random integer $e,1< e<\phi$, such that $\gcd(e,\phi)=1$.
- 2. Select a random integer x_0 (the *seed*) in the interval [1, n-1].
- 3. For i from 1 to l do the following:
 - 3.1 $x_i \leftarrow x_{i-1}^e \mod n$.
 - 3.2 $z_i \leftarrow$ the least significant bit of x_i .
- 4. The output sequence is z_1, z_2, \ldots, z_l .
- 1. P와 q라는 두 소수를 생성
- 2. n=pq 계산. 파이값(p-1)(q-1) 계산
- 3. 파이 값과 서로 소인 random한 정수 e를 정함.
- 4. 1과 n-1 사이의 임의의 정수 x0(seed값)을 선택함
- 5. xi는 xi-1mod n
- 6. i번째 z값은 x의 least significant bit를 셋

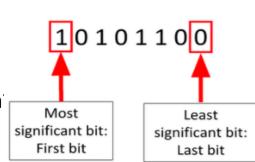


Cryptographically secure pseudorandom bit generation

Algorithm Micali-Schnorr pseudorandom bit generator

SUMMARY: a pseudorandom bit sequence is generated.

- 1. Setup. Generate two secret RSA-like primes p and q (cf. Note 8.8), and compute n=pq and $\phi=(p-1)(q-1)$. Let $N=\lfloor \lg n\rfloor+1$ (the bitlength of n). Select an integer $e, 1< e<\phi$, such that $\gcd(e,\phi)=1$ and $80e\leq N$. Let $k=\lfloor N(1-\frac{2}{e})\rfloor$ and r=N-k.
- 2. Select a random sequence x_0 (the *seed*) of bitlength r.
- 3. Generate a pseudorandom sequence of length $k \cdot l$. For i from 1 to l do the following:
 - 3.1 $y_i \leftarrow x_{i-1}^e \mod n$.
 - 3.2 $x_i \leftarrow$ the r most significant bits of y_i .
 - 3.3 $z_i \leftarrow$ the k least significant bits of y_i .
- 4. The output sequence is $z_1 \parallel z_2 \parallel \cdots \parallel z_l$, where \parallel denotes concatenation.
- 1. p와 q라는 두 소수를 생성
- 2. n=pq 계산. 파이값=(p-1)(q-1) 계산
- 3. N = [logn]+1 (n의 비트 길이)
- 4. 정수 e를 선택, gcd() = 1 파이 값과 서로 소인 random
- 4. 1과 n-1 사이의 임의의 정수 x0(seed값)을 선택함
- 5. x값으로 y를 생성. y값으로 x와 z를 생성.



가전기기 사용 여부

SUMMARY: a pseudorandom bit sequence z_1, z_2, \ldots, z_l of length l is generated.

- 1. Setup. Generate two large secret random (and distinct) primes p and q (cf. Note 8.8), each congruent to 3 modulo 4, and compute n = pq.
- 2. Select a random integer s (the seed) in the interval [1, n-1] such that gcd(s, n) = 1, and compute $x_0 \leftarrow s^2 \mod n$.
- 3. For i from 1 to l do the following:
 - 3.1 $x_i \leftarrow x_{i-1}^2 \mod n$.
 - 3.2 $z_i \leftarrow$ the least significant bit of x_i .
- 4. The output sequence is z_1, z_2, \ldots, z_l .
- 임의의 소수 p와 q를 선택(아주 큰 숫자여야 소인수분해가 어렵다.)
- 1과 n-1 사이의 임의의 정수 s(seed값)를 선택함. s와 n은 서로 소여야 한다.
- x₀을 셋팅 후 xi값을 제곱 후 mod n값으로 순차적으로 계산함
- 생성된 z값은 least significant bit으로 사용

