3.5 Computing square roots in \mathbb{Z}_n

박태환 2017.09.18

l. 관련 알고리즘 소개

- 1. Extended Euclidean Algorithm
- 2. Computing multiplicative inverses in \mathbb{Z}_n
- 3. Repeated square-and-multiply algorithm for exp. In \mathbb{Z}_n
- 4. Jacobi symbol (and Legendre symbol) Computation
- 5. Repeated square-and-multiply algorithm for exp. In \mathbb{F}_{p^m}

II. Computing square roots in \mathbb{Z}_n

- 1. n: Prime
- 2. n: composite

- Extended Euclidean Algorithm
 - Extended Euclidean Algorithm : can calculated (1) d = gcd(a, b) and (2) integer x and y satisfying ax + by = d
 - Running time: $O((\lg n)^2)$
 - Ex) a = 4864, b = 3458

q	r	x	y	a	b	x_2	x_1	y_2	y_1
_	_	_	_	4864	3458	1	0	0	1
1	1406	1	-1	3458	1406	0	1	1	-1
2	646	-2	3	1406	646	1	-2	-1	3
2	114	5	-7	646	114	-2	5	3	-7
5	76	-27	38	114	76	5	-27	-7	38
1	38	32	-45	76	38	-27	32	38	-45
2	0	-91	128	38	0	32	-91	-45	128

Algorithm Extended Euclidean algorithm

INPUT: two non-negative integers a and b with $a \ge b$. OUTPUT: d = gcd(a, b) and integers x, y satisfying ax + by = d.

- 1. If b = 0 then set $d \leftarrow a, x \leftarrow 1, y \leftarrow 0$, and return(d,x,y).
- 2. Set $x_2 \leftarrow 1$, $x_1 \leftarrow 0$, $y_2 \leftarrow 0$, $y_1 \leftarrow 1$.
- 3. While b > 0 do the following:

3.1 $q \leftarrow \lfloor a/b \rfloor$, $r \leftarrow a - qb$, $x \leftarrow x_2 - qx_1$, $y \leftarrow y_2 - qy_1$. 3.2 $a \leftarrow b$, $b \leftarrow r$, $x_2 \leftarrow x_1$, $x_1 \leftarrow x$, $y_2 \leftarrow y_1$, and $y_1 \leftarrow y$.

4. Set $d \leftarrow a$, $x \leftarrow x_2$, $y \leftarrow y_2$, and return(d,x,y).

Computing multiplicative inverses in \mathbb{Z}_n

- Computing multiplicative inverses in \mathbb{Z}_n
 - Extended Euclidean Algorithm 활용
 - Multiplicative inverse 계산
 - 앞선 예제의 경우, d > 1, multiplicative inverse does not exist
 - Ex) a = 3, b = 5, d = gcd(3, 5) = 1, n = 10 3*(7) + 5*(2) = 1 (mod 10), a⁻¹ = 7 3*(7) = 21 = 1 (mod 10)

Algorithm Computing multiplicative inverses in \mathbb{Z}_n

INPUT: $a \in \mathbb{Z}_n$. OUTPUT: $a^{-1} \mod n$, provided that it exists.

- 1. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers x and y such that ax + ny = d, where d = gcd(a, n).
- 2. If d > 1, then $a^{-1} \mod n$ does not exist. Otherwise, return(x).

• Repeated square-and-multiply algorithm for exp. in \mathbb{Z}_n

$$a^{k} = \prod_{i=0}^{t} a^{k_{i}2^{i}} = (a^{2^{0}})^{k_{0}} (a^{2^{1}})^{k_{1}} \cdots (a^{2^{t}})^{k_{t}}$$

- **Ex)** 5⁵⁹⁶ mod 1234 = 1013

i	0	1	2	3	4	5	6	7	8	9
k_i	0	0	1	0	1	0	1	0	0	1
A	5	25	625	681	1011	369	421	779	947	925
b	1	1	625	625	67	67	1059	1059	1059	1013

Algorithm Repeated square-and-multiply algorithm for exponentiation in \mathbb{Z}_n

INPUT: $a \in \mathbb{Z}_n$, and integer $0 \le k < n$ whose binary representation is $k = \sum_{i=0}^t k_i 2^i$. OUTPUT: $a^k \mod n$.

- 1. Set $b \leftarrow 1$. If k = 0 then return(b).
- 2. Set $A \leftarrow a$.
- 3. If $k_0 = 1$ then set $b \leftarrow a$.
- 4. For i from 1 to t do the following:
 - 4.1 Set $A \leftarrow A^2 \mod n$.
 - 4.2 If $k_i = 1$ then set $b \leftarrow A \cdot b \mod n$.
- 5. Return(b).

- Jacobi symbol (and Legendre symbol) Computation
 - Legendre symbol: tool for keeping track of whether or not an integer a is a quadratic residue modulo a prime p

$$egin{pmatrix} \displaystyle \left(rac{a}{p}
ight) = \left\{egin{array}{cc} 0, & ext{if } p | a, \ 1, & ext{if } a \in Q_p \ -1, & ext{if } a \in \overline{Q}_p \end{array}
ight.$$

- (i) $\left(\frac{a}{p}\right) \models a^{(p-1)/2} \pmod{p}$. In particular, $\left(\frac{1}{p}\right) = 1$ and $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$. Hence $-1 \in Q_p$ if $p \equiv 1 \pmod{4}$, and $-1 \in \overline{Q_p}$ if $p \equiv 3 \pmod{4}$.
- (ii) $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$. Hence if $a \in \mathbb{Z}_p^*$, then $\left(\frac{a^2}{p}\right) = 1$.
- (iii) If $a \equiv b \pmod{p}$, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
- (iv) $\binom{2}{p} = (-1)^{(p^2-1)/8}$. Hence $\binom{2}{p} = 1$ if $p \equiv 1$ or 7 (mod 8), and $\binom{2}{p} = -1$ if $p \equiv 3$ or 5 (mod 8).
- (v) (law of quadratic reciprocity) If q is an odd prime distinct from p, then

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)(-1)^{(p-1)(q-1)/4}.$$

- Jacobi symbol (and Legendre symbol) Computation
 - Jacobi symbol $\left(\frac{a}{n}\right)$, $n \ge 3$, be odd with prime factorization $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$

 $\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \left(\frac{a}{p_2}\right)^{e_2} \cdots \left(\frac{a}{p_k}\right)^{e_k}$

- If n is prime, the Jacobi symbol is just the Legendre symbol
- $-m \ge 3, n \ge 3$ be odd integers and $a, b \in \mathbb{Z}$, the Jacobi symbol has the following properties

- Jacobi symbol (and Legendre symbol) Computation
 - If n is odd and $a = 2^e a_1$, a_1 is odd, then

$$\binom{a}{n} = \binom{2^e}{n} \binom{a_1}{n} = \binom{2}{n}^e \binom{n \mod a_1}{a_1} (-1)^{(a_1-1)(n-1)/4}.$$

Algorithm Jacobi symbol (and Legendre symbol) computation

JACOBI(a,n)

INPUT: an odd integer $n \ge 3$, and an integer $a, 0 \le a < n$.

OUTPUT: the Jacobi symbol $\left(\frac{a}{n}\right)$ (and hence the Legendre symbol when n is prime).

- 1. If a = 0 then return(0).
- 2. If a = 1 then return(1).
- 3. Write $a = 2^e a_1$, where a_1 is odd.
- 4. If e is even then set $s \leftarrow 1$. Otherwise set $s \leftarrow 1$ if $n \equiv 1$ or 7 (mod 8), or set $s \leftarrow -1$ if $n \equiv 3$ or 5 (mod 8).
- 5. If $n \equiv 3 \pmod{4}$ and $a_1 \equiv 3 \pmod{4}$ then set $s \leftarrow -s$.
- 6. Set $n_1 \leftarrow n \mod a_1$.
- 7. If $a_1 = 1$ then return(s); otherwise return($s \cdot \text{JACOBI}(n_1, a_1)$).

Jacobi symbol (and Legendre symbol) Computation
 - Ex) a = 158, n = 235

$$\begin{pmatrix} \frac{158}{235} \end{pmatrix} = \left(\frac{2}{235}\right) \left(\frac{79}{235}\right) = (-1) \left(\frac{235}{79}\right) (-1)^{78 \cdot 234/4} = \left(\frac{77}{79}\right) \\ = \left(\frac{79}{77}\right) (-1)^{76 \cdot 78/4} = \left(\frac{2}{77}\right) = -1.$$

- Ex) quadratic residues and non-residues

 $\left(\frac{5}{21}\right) = 1$ but $5 \notin Q_{21}$. $Q_{21} = \{1, 4, 16\}$

$a\in\mathbb{Z}_{21}^*$	1	2	4	5	8	10	11	13	16	17	19	20
$a^2 \mod n$	1	4	16	4	1	16	16	1	4	16	4	1
$\left(\frac{a}{3}\right)$	1	-1	1	-1	-1	1	-1	1	1	-1	1	-1
$\left(\frac{a}{7}\right)$	1	1	1	-1	1	-1	1	-1	1	-1	-1	-1
$\left(\frac{a}{21}\right)$	1	-1	1	1	-1	-1	-1	-1	1	1	-1	1

• Repeated square-and-multiply algorithm for exp. in \mathbb{F}_{p^m}

Algorithm Repeated square-and-multiply algorithm for exponentiation in \mathbb{F}_{p^m}

INPUT: $g(x) \in \mathbb{F}_{p^m}$ and an integer $0 \leq k < p^m - 1$ whose binary representation is $k = \sum_{i=0}^{t} k_i 2^i$. (The field \mathbb{F}_{p^m} is represented as $\mathbb{Z}_p[x]/(f(x))$, where $f(x) \in \mathbb{Z}_p[x]$ is an irreducible polynomial of degree m over \mathbb{Z}_p .) OUTPUT: $g(x)^k \mod f(x)$.

- 1. Set $s(x) \leftarrow 1$. If k = 0 then return(s(x)).
- 2. Set $G(x) \leftarrow g(x)$.
- 3. If $k_0 = 1$ then set $s(x) \leftarrow g(x)$.
- 4. For i from 1 to t do the following:
 - 4.1 Set $G(x) \leftarrow G(x)^2 \mod f(x)$.
 - 4.2 If $k_i = 1$ then set $s(x) \leftarrow G(x) \cdot s(x) \mod f(x)$.
- 5. Return(s(x)).

- n: Prime(1/5)
 - Algorithm 2.149: Jacobi symbol computation
 - Algorithm 2.142: Computing multiplicative inverse
 - Algorithm 2.143: Repeated square-and-multiply algorithm for exp. in \mathbb{Z}_n

Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and an integer $a, 1 \le a \le p - 1$. OUTPUT: the two square roots of a modulo p, provided a is a quadratic residue modulo p.

- 1. Compute the Legendre symbol $\left(\frac{a}{p}\right)$ using Algorithm 2.149. If $\left(\frac{a}{p}\right) = -1$ then return(a does not have a square root modulo p) and terminate.
- Select integers b, 1 ≤ b ≤ p − 1, at random until one is found with (^b/_p) = −1. (b is a quadratic non-residue modulo p.)
- 3. By repeated division by 2, write $p 1 = 2^{s}t$, where t is odd.
- 4. Compute $a^{-1} \mod p$ by the extended Euclidean algorithm (Algorithm 2.142).
- 5. Set $c \leftarrow b^t \mod p$ and $r \leftarrow a^{(t+1)/2} \mod p$ (Algorithm 2.143).
- 6. For i from 1 to s 1 do the following:

6.1 Compute
$$d = (r^2 \cdot a^{-1})^{2^{s-i-1}} \mod p$$
.

- 6.2 If $d \equiv -1 \pmod{p}$ then set $r \leftarrow r \cdot c \mod{p}$.
- 6.3 Set $c \leftarrow c^2 \mod p$.
- 7. Return(r, -r).

Computing square roots in \mathbb{Z}_n

• n: Prime(2/5)

Ex)
$$p = 5$$
, $a = 4$, assume that $b = 3$ (quadratic non-residue), $a^{-1} = 4$
 $p - 1 = 2^{s}t = 5 - 1 = 2^{2}1$,
 $s = 2, t = 1$
 $c = b^{t} \mod p = 3^{1} \mod 5 \equiv 3 \mod 5$
 $r = a^{(t+1)/2} \mod p = 4^{(1+1)/2} \mod 5 \equiv 4 \mod 5$
from $i = 0$ to $i = s - 1$
 $d = (r^{2} \cdot a^{-1})^{2^{s-i-1}} \mod p = (4^{2} \cdot 4)^{2^{2-1-1}} \mod 5 \equiv 4 \mod 5 \equiv -1 \mod 5$
if $d = -1 \mod 5$
 $r = r \cdot c \mod p = 4 \cdot 3 \mod 5 = 12 \mod 5 \equiv 2 \pmod{5}$

Computing square roots in \mathbb{Z}_n

• n: Prime(3/5)

$$-$$
 Ex) $p = 7 \equiv 3 \pmod{4}$, $a = 4$

 $r = a^{(p+1)/4} \mod p$ = 4^{(7+1)/4} mod 7 = 4² mod 7 = 2 (mod 7)

Algorithm Finding square roots modulo a prime p where $p \equiv 3 \pmod{4}$

INPUT: an odd prime p where $p \equiv 3 \pmod{4}$, and a square $a \in Q_p$. OUTPUT: the two square roots of $a \mod p$.

- 1. Compute $r = a^{(p+1)/4} \mod p$ (Algorithm 2.143).
- 2. Return(r, -r).

Computing square roots in \mathbb{Z}_n

• n: Prime(4/5)

- Ex 1)
$$p = 13 \equiv 5 \pmod{8}$$
, $a = 3$
 $d = a^{(p-1)/4} \mod p$
 $= 3^{(13-1)/4} \mod 13$
 $= 3^3 \mod 13 \equiv 1 \pmod{13}$
 $r = a^{(p+3)/8} \mod p$
 $= 3^{(13+3)/8} \mod 13$
 $= 3^2 \mod 13 \equiv 9 \pmod{13}$
 $r^2 = 9^2 \mod 13 \equiv 3 \pmod{13}$
- Ex 2) $p = 13 \equiv 5 \pmod{8}$, $a = 4$
 $d = a^{(p-1)/4} \mod p$
 $= 4^{(13-1)/4} \mod 13$
 $= 4^3 \mod 13 \equiv 12 \pmod{13}$
 $r = 2a(4a)^{(p-5)/8} \mod p$
 $= 2 * 4 * (4 * 4)^{(13-5)/8} \mod 13$
 $= 128 \mod 13 \equiv 11 \pmod{13}$
 $r^2 = 11^2 \mod 13 \equiv 4 \pmod{13}$

Algorithm Finding square roots modulo a prime p where $p \equiv 5 \pmod{8}$

INPUT: an odd prime p where $p \equiv 5 \pmod{8}$, and a square $a \in Q_p$. OUTPUT: the two square roots of $a \mod p$.

- 1. Compute $d = a^{(p-1)/4} \mod p$ (Algorithm 2.143).
- 2. If d = 1 then compute $r = a^{(p+3)/8} \mod p$.
- 3. If d = p 1 then compute $r = 2a(4a)^{(p-5)/8} \mod p$.
- 4. Return(r, -r).

- n: Prime(5/5)
 - For finding square roots modulo p(when $p 1 = 2^{s}t$ with large)
 - Algorithm 2.227: Repeated square-and-multiply algorithm for exp. in \mathbb{Z}_n

Algorithm Finding square roots modulo a prime p

INPUT: an odd prime p and a square $a \in Q_p$. OUTPUT: the two square roots of a modulo p.

- 1. Choose random $b \in \mathbb{Z}_p$ until $b^2 4a$ is a quadratic non-residue modulo p, i.e., $\left(\frac{b^2 4a}{p}\right) = -1.$
- 2. Let f be the polynomial $x^2 bx + a$ in $\mathbb{Z}_p[x]$.
- 3. Compute $r = x^{(p+1)/2} \mod f$ using Algorithm 2.227. (Note: r will be an integer.)
- 4. Return(r, -r).

n: composite(1/2)

- Square Root Modulo n Problem(SQROOT): given a composite integer n and a quadratic residue a modulo n (i.e. $a \in Q_n$), find a square root of a modulo n
- If the factors p and q of n are known, SQROOT can be solved efficiently by first finding square roots and combining them using CRT(Chinese Remainder Theorem)

Algorithm Finding square roots modulo n given its prime factors p and q

INPUT: an integer n, its prime factors p and q, and $a \in Q_n$. OUTPUT: the four square roots of a modulo n.

- Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square roots r and -r of a modulo p.
- Use Algorithm 3.39 (or Algorithm 3.36 or 3.37, if applicable) to find the two square roots s and -s of a modulo q.
- 3. Use the extended Euclidean algorithm (Algorithm 2.107) to find integers c and d such that cp + dq = 1.
- 4. Set $x \leftarrow (rdq + scp) \mod n$ and $y \leftarrow (rdq scp) \mod n$.
- 5. Return $(\pm x \mod n, \pm y \mod n)$.

- n: composite(2/2)
 - Ex) p=3, q= 5, n=15, a=4
 (1) Calc. r, -r, s, -s(r =2, s=2)

(2) Calc. c and d by using the Extended Euclidean Alg. $(c=2, d=14, 3*2 5*14=76 = 1 \pmod{15})$

(3) Calc.
$$x = (rdq + scp) \mod n$$

 $x = (2*14*5) + (2*2*3) = 152 = 2 \pmod{15}$
 $x^2 = 2^2 \equiv 4 \pmod{15}$
(3) Calc. $y = (rdq - scp) \mod n$
 $y = (2*14*5) - (2*2*3) = 128 = 8 \pmod{15}$

 $y^2 = 8^2 = 64 \equiv 4 \pmod{15}$

Thank you!

1-AL